
e

(NASA -Cf- 18 54 4 4 1 A N AUTOB ATION S I H U L AT ION N89-260 17
TESTBED Report, O c t . ,1987 - Sep. 198d
(V a n d e r b i l t Univ .) 1 1 4 p CSCL lUB

Unclas l G 3 / O 9 0219561

e
AN AUTOMATION SIMULATION TESTBED

e

e

e

a

e

e

a

e

Phase I Report
October 1987 - September 1988

National Aeronautics and Space Administration
I 3 Marshall Space Flight Center ., r *$-'

Department of Electrical Engineering

Authors:
Dr George E. Cook
Dr Janos Sztipanovits
Dr Csaba Biegl
Dr Gabor Karsai
James F. Springfield
Atheel Mutammara

Contracting Officer Representative: Dr Kenneth R Fenandez

Grant No. NAG-8690

TABLE OF CONTENTS

EXECUTIVE SUMMARY .. 1

1 . INTRODUCTION ... 5

2 . WORKSTATION IMPLEMENTATION OF ROBOSIM 6

2.1
2.2
2.3
2.4
2.5
2.6
2.7
A-2.1
A-2.2

The HP350SRX Graphics Workstation .. 6
The MD Program .. 10
The R2 Program .. 11
Simulation Library and Environment .. 28
Inverse Kinematics ... 29
Collision Detection ... 31
Surgical Positioner .. 38
APPENDIX: Structure Declarations for the Simulation Library 41
APPENDIX: Simulation Library Functions ... 44

. .

3 . INTELLIGENT GRAPHICS MODELING ENVIRONMENT 47

3.1 Critique of the Current Graphics Modeling Technique 47
3.2 System Design of the Graphic Simulation Environment. 48

3.4 Automation Interface for Structural Modeling Systems 60
3.3 Detailed Description of the Components ... 51

4 . CASE STUDIES ... 73

4.1 Space Station Modeling Using ROBOSIM .. 73
4.2 Operational Modeling of the Space Station ... 75
4.3 Study of the Space Station ECLSS ... 84

5 . Future Work .. 112

1

EXECUTIVE SUMMARY

0

The objective of this research program has been twofold. First, the basic capabilities
of ROBOSIM (a graphical simulation system developed jointly by NASA-MSFC and
Vanderbilt University) are being improved and extended by taking advantage of advanced
graphic workstation technology and artificial intelligence (AI) programming techniques.
Second, the scope of the graphic simulation testbed is being extended to include general
problems of Space Station automation.

The first objective is a logical continuation of the joint NASA/Vanderbilt ROBOSIM
development. State-of-the-art graphic workstations offer new opportunities for simulation
of complex, linked geometrical structures. Hardware support for 3-D graphics and high
processing performance make high resolution solid modeling, collision detection, and
simulation of structural dynamics computationally feasible. With the introduction of new
AI programming techniques, graphic structural simulation can be combined with high-level,
AI-based control functions; thus the simulation testbed can support studies in task level
planning and in other issues of autonomous control.

The Space Station is a vastly complex system with many interacting subsystems.
Automation, being a decisive factor in crew productivity and safety, is expected to play a
major role in the Space Station operation. The rationale for the second objective of this
project is based on the fact that formulation and testing of automation concepts require
understanding the behavior of and the interactions among the various subsystems. For
example, the Environmental Control and Life Support System (ECLSS), which is one of
the most complex subsystems in the Space Station, is an aggregate of interdependent
mechanical, chemical and electrical processes. These processes interact with each other
and impose constraints on the operation of other subsystems in many levels. The following
list includes a few examples for these interactions:

1. the air temperature control in the ECLSS is directly related to the Thermal subsys-
tem,

2

2. the ECLSS is one of the major electric energy consumers in the Space Station,
therefore its operation interacts with the Electric Power Supply subsystem,

a
3. effects of the ECLSS operation on the utility consumers (air, potable water, hygienic

water, wash water, etc.),

a

a

e

a

a

e

e

4. waste material removal may interact with low-gravity experiments.

Design and testing of automation concepts demand modeling of the affected
processes, their interactions and that of the proposed control systems. These models may
vary in objective and sophistication, in accordance with the level of control functions to be
studied. The analysis of elementary control loops that maintain the value of a process
variable require the use of high fidelity dynamic simulation. The testing and validation of
higher level and autonomous controllers will necessitate the use of AI-based models
representing qualitative as well as quantitative features of processes. Extended modeling
techniques include the explicit description of hierarchical process structures, causal rela-
tions, fault propagation models and component hierarchies.

The automation testbed has been designed to facilitate studies in Space Station
automation concepts. Its main purpose is to provide cost-effective solutions for the analysis
of the interactions among work packages, and for experiments with the scars and hooks
provided by the IOC automation concepts for advanced automation. Supplementing the
ROBOSIM graphical simulation package with the required new capabilities is a complex
task. It requires significant extension of the system in many ways, including the incorpora-
tion of AI-based modeling tools, the application of automatic program generation facilities
for fast prototyping, and the introduction of advanced software engineering techniques for
managing large-scale models.

In this Report, the first steps of this process are discussed. In the first section the new
capabilities of the graphic workstation version of ROBOSIM are described. The work
accomplished in the first year of the project has resulted in significantly improved 3-D
graphic capabilities, interactive model building tools, and a solution for collision detection.
The second section discusses the design details of the next version of the graphical simula-
tion package. The new design makes it possible to integrate the system with tools support-
ing automation studies as well. The third section provides case studies that demonstrate the
usage and capabilities of an integrated structural modeling and automation testbed. The
case studies include the structural model of the Space Station, a study of the interactions
between the attitude control and electrical energy supply system, and a simplified process

e

3

e

e

and failure model of the ECLSS subsystem. The fourth section describes the work plan for
the second year effort and presents a work schedule to track the work proposed.

a

e

The work described in this paper has been mostly performed on a Hewlett Packard
9000/350 SRX graphics workstation. We would like to express our gratitude to the In-
dustrual Application Center of the Hewlett Packard Company for their support which
made this research possible.

e

e

e

e

e

e

e

4

e

1. INTRODUCTION

0

0

0

e

This report is organized into five chapters. Chapter 2 which follows the introduction
describes the work done in porting ROBOSIM to the HP350SRX graphics workstation.
New additional ROBOSIM features, like collision detection and new kinematics simulation
methods are also discussed here.

Chapter 3 can be divided into two parts. In the first part - based on the experiences of
the work on ROBOSIM - we suggest a new graphics structural modeling environment,
which is intended to be a part of a new knowledge-based multiple aspect modeling testbed.
The second part of the chapter contains a description of the knowledge-based modeling
methodologies and tools already available to us.

Chapter 4 contains three case studies in the area of Space Station automation. First a
geometrical structural model of the station is presented. This model was developed using
the ROBOSIM package. Next the possible application areas of an integrated modeling
environment in the testing of different Space Station operations are discussed. One of these
possible application areas is the modeling of the Environmental Control and Life Support
System (ECLSS), which is one of the most complex subsystems of the station. Using the
multiple aspect modeling methodology presented in Chapter 3 we are building a fault
propagation model of this system, which is described at the end of the chapter.

Chapter 5 concludes the report by suggesting possible future research directions for
the application of these modeling techniques in automation systems.

5

2. WORKSTATION IMPLEMENTATION OF ROBOSIM

0

0

e

This chapter describes the work which has been done in order to enhance the
capabilities of the ROBOSIM graphical structure modeling package. ROBOSIM in its
original form was a command-oriented modeling language, with a not too user friendly
programming interface. Furthermore its graphics capabilities were limited, due to the fact
that originally it was designed for use on a remote graphics terminal attached to a VAX-
like processor, which did not offer many of the features available on modern graphics
engineering workstations. Further additions include simulation libraries for collision
detection and dynamics, which are also described later in this chapter.

2.1 The HP350SRX Graphics Workstation

Since part of the impetus for extending ROBOSIM was the capabilities provided by
graphics workstations, it is necessary to understand these capabilities. All of the informa-
tion that follows is specifically oriented towards the HP350SRX workstation; however,
much is generally applicable to other workstations.

The HP350SRX workstation has a pixel resolution of 1280x1024 pixels. There are 16
image planes and 4 overlay planes. Each plane is one bit per pixel. Typically the image
planes are used for graphics and the overlay planes are used for XWindows. When the
image planes are rapidly changed (animation) flickering results if the images are not
double buffered. This means that only 8 image planes are actually available. While one set
of image planes are being displayed, the other set is being changed. Then, the sets are
switched. This results in flicker-free motion at the cost of reduced numbers of colors. Since
only eight planes are used at one time, only 256 colors can be displayed at one time. The
overlay planes, if used, will hide the image planes. Therefore, if X is being used, a
transparent window is created. This allows X applications to be run while seeing what is in
the image planes.

6

e

e

e

0

e

e

e

e

The most important capability of the workstation is the increased speed and facilities
provided by the Starbase graphics library and the hardware graphics accelerator. These
facilities allow display of three dimensional graphics objects with options such as hidden
surface removal, shading, perspective views, and colors.

The hardware accelerator includes a matrix multiplier. This allows multiplication of
4x4 matrices much faster than could be done in software. This facility is used to a great
extent in display of objects. There are many coordinate transformations occurring during
display such as rotation and translation of objects in modeling coordinates, conversion of
modeling to world coordinates, perspective transformations, world to virtual device coor-
dinates, and virtual device to device coordinates. Each of these involves multiplying by
matrices; also, there can be many levels of transformations in modeling coordinates. All
graphic objects are "put through the pipeline" of transformations, and the hardware multi-
plier is a key part in providing real-time speed. There is one difference between the trans-
formation matrices used in Starbase and the ones traditionally used by roboticists. The
graphics standard uses matrices that are the transpose of the ones used in robotics. There-
fore, all matrices in the programs are represented in the graphics standard form. For this
reason, all matrix equations had to be the reverse of those used in robotics.

Another useful feature of Starbase is the display list. A display list is made up of
segments. Each segment can be thought of as a procedure. One segment can call another
and the called segment returns to the calling segment when finished. Almost any Starbase
function can be placed in a segment. Then, whenever that segment is traversed those
commands are executed. This is very useful; for instance, all of the Starbase polygon
procedure calls that make up a robot link can be placed in a segment with a transformation
matrix that represents the transformation resulting from a particular value for that link's
joint variable. Then, changing the transformation matrix in the display list will result in that
link "moving" the next time that display list is traversed. A segment network is shown
below. It has been printed from the simulation program for an actual robot. It has been
abbreviated in parts. "fd" is the file descriptor returned by Starbase when a display is
opened for graphic output. The {} indicate an array that has not been printed out. Segment
#O is the main segment. It has a call to segment #l. Segment #1 is for a robot. If there
were another robot, then there would be another call in segment #O. Segment #1 first
pushes a matrix onto the transformation stack. This transformation corresponds to the
position of the robot in the world. Next, segments 2-9 are called. In segment #2 the first
concat transformatiodd is a transformation describing the structure of the link. The
secondtransformation describes the current value of the joint variable. Concat multiplies
the matrix by whatever is currently on the transformation stack and pushes the result back

e

7

a

e

on the stack. Now, the polygons in segment #2 are displayed after first being transformed
by whatever is on top of the transformation stack. Segment #2 then returns control to
segment #1, and traversal continues through segment #9. When segment #9 returns, the
top of the matrix is popped off and returned to the state it was in before traversal began.

segment 0 begin
move3d(fd, 0, 0,O)
dl label(fd, 1)
diesegment(fd, 1)

segment 0 end

segment 1 begin
push-matriw fd, { 1)
call segment(fd, 2)
d:segment(fd, 3)
call-segment(fd, 4)
call segment(fd, 5)
call-segment(fd, 6)
d-segment(fd, 7>
call-segment(fd, 8)
d-segment(fd, 9)
pocmatrix(fd)

segment 1 end

segment 2 begin
concat transformatiodd(fd, { }, 0,O)
concattransformatiodd(fd, { 1, 0, 0)
PolYgo-d(fd, 0, 591)

p l y g o d (fd, {I, 591)

. . .

. . .
segment 2 end

. . . .

. . . .
segment 9 begin

concat transformatiodd(fd, { }, 0,O)
concat-transformationM(fd, { 1, 0, 0)
PolYgo-d(f4 {I, 591) . .
PdlYiOdd(fd, ti, 5, 1)

segment 9 end

The ability to pick an object that is displayed on the screen is a very important part in
the graphics editor. Starbase provides a simple way to do this. When a display list is dis-
played on the screen the points making up an object are eventually converted to actual
device coordinates. Now, given a range of coordinates, Starbase can return information

e

8

regarding what is displayed in that range. This consists of the segment number, the most
recent label within that segment (if any), and the offset from that label. For instance, if the
first polygon in segment #9 fell within that window, then Starbase would return segment
#9, label #O (there is no label in segment #9), and an offset of 3 (the first polygon is the
third command in segment #9). Starbase can even return the entire path through the
display list, giving all called segments and offsets leading up to the polygon in segment #9.

XWindows provides the ability to read the mouse position. A program can read the
position of the mouse and convert that position to the form required by Starbase. Thus, one
can use the mouse to point to an object on the screen, and a program can figure out what is
being pointed to.

0

XWindows also provides many other facilities that proved to be useful in implement-
ing this work. One of the most useful aspects of X is the menus. Using X, one can imple-
ment menus very easily. This allows user-friendly interfaces to be written without having to
deal with the complexities introduced. For instance, a set of menus can be created to
manipulate some display list. The menu entries are created and X is told which procedures
to execute upon selection of the corresponding menu entry. A transparent window in the
center of the screen allows the image planes (graphics planes) to be seen through the X
application.

There are also two other peripherals which have been extensively used. The button
box and the knob box provide very easily used input capabilities. Once the devices have
been opened for use by a program it is quite simple to poll them. The button box returns an
integer corresponding to the button pushed, if any. The knob box is just as simple to poll,
but it has additional features. The knob box has nine knobs and each can be set differently.
A knob’s range can be set; for example, a knob can return a number between -1. and 1. or it
can return a number between 10. and 100. Also, the knob can be preset to a particular
value. This means that whatever position the knob is in, that position corresponds to the set
value.

The features of the HP350SRX workstation make it ideal for use in high-performance
graphics applications. The resolution and color capability allow for sophisticated graphics.
The graphics accelerator provides speed, and the display lists provide easy access to
graphics hardware. XWindows allows friendly and generic user interfaces to be written
simply and easily. And the peripherals such as the mouse, button box, and knob box
provide a flexible and diverse range of input.

9

e

2.2 The MD Proeram

e

e

e

e

e

e

Porting ROBOSIM to the HP350SRX workstation added no additional features to
those found in the VAX version. ROBOSIM on the HP no longer used the TEKTRONIX
4014 interface, although XWindows allowed certain windows to operate in a TEKTRONIX
emulator mode. ROBOSIM was adapted to use the Starbase graphics move and draw
commands. ROBOSIM still performed all transformations internally, but used a window
from X and Starbase graphics for output. This allowed one window in which to run the
process and another in which to see the output. This capability spurred an early attempt at
allowing an interactive mode of operation in which ROBOSIM commands were typed in,
and the effects were immediately seen in the display window. However, this method was
never effectively implemented or used.

The MD program originally evolved as a means of displaying a robot that had been
generated by ROBOSIM. Through this program, a user could display a robot and set colors
and other attributes such as hidden surface removal, shading, and specular reflection. Also,
the camera position (Le. the position from which the object is looked at) could be changed
to provide views of the object from many different perspectives.

Extensions to the basic MD allowed multiple robots and objects, and it even has
provisions to accept joint angles and other parameters from a separate process. With this
feature, a primitive simulation can be run. An early use of this involved a lisp process
piping commands to a space station model that would orient the solar collectors to receive
maximum exposure. MD was also able to run in a mode in which joint angles were read
from a file and the robot’s joints were cycled through these. This feature was used for
simple simulations of downhand welding. Two robots, one a six degree of freedom robot,
and the other a two degree of freedom positioner, were simulated. The robot performed
the welding and the positioner assisted in maintaining the downhand position and proper
orientation of the wire feed to the direction of movement of the torch. The joint angles
were generated by a separate program and stored in two files. Using MD, one could look at
the robots from various positions to visually verify that the downhand welding was working
correctly.

The basic structure of MD involves loading the link files of a robot and creating
display segments corresponding to each link. Each segment has a transformation matrix
and a polygon list. Also, there is a segment for the entire robot that has a transformation
matrix describing the position of the robot in the world, and commands that set the color

e

10

and other parameters for the robot. The input devices for MD are the button box and the
knob box. These devices provide the ability to turn functions of Starbase on and off and to
adjust parameters of Starbase. For most functions, there is a one-to-one correspondence
between Starbase functions and MD functions. MD is useful for looking at a robot after it
has been made by ROBOSIM. The robot can be brought up on the screen, looked at from
various positions, and the joints can be moved.

The capabilities of MD for more complicated simulation were very limited, and
further work on MD was replaced by the development of the simulation library and environ-
ment. MD is still used for photographing robots and other structures such as the space
station. It is also still used for quickly verifying robots or other structures that have been
constructed with ROBOSIM. Although it is not used directly for simulation purposes now,
the components of it dealing with graphics manipulations are still used in R2 and other
programs.

2.3 The R2 Promam

The development of R2 arose from the capabilities provided by MD and the need for
an easier to use and more flexible interface to ROBOSIM. R2 was designed to overcome
some of the limitations of ROBOSIM while taking advantage of the facilities available on
graphics workstations. However, complete compatibility with ROBOSIM was desired; this
was accomplished by the output of R2 being ROBOSIM code. Having R2 generate
ROBOSIM code allowed R2 to be much simpler. It was not necessary to reimplement what
ROBOSIM already provided. This method has proved to be the most flexible. Now, robots
can be designed by writing a ROBOSIM program, using R2 to generate a ROBOSIM
program, directly generating files from custom programs, or any combination thereof.

ROBOSIM provides a simple way in which to design robots. Based on the specifica-
tions in a user-written ’program’ a file for each link is generated. This file contains the
vector list that is used to draw the robot, the A-matrix, the Denavit-Hartenburg
parameters, joint types, and the pseudo-inertia matrix. However, this method requires the
user to maintain a lot of information that the computer can handle much more easily. Since
ROBOSIM creates every object at the origin, the user must keep track of each objects’
dimensions in order to place it such that it will be in the proper position and orientation
with respect to the other objects in a link. The only other method that ROBOSIM allows is
to load in data files that have been generated by some other method. This requires a

11

e

a

a

a

a

a

a

a

a

custom written FORTRAN program with appropriate calls to ROBOSIM functions. This is
the most flexible way in which to use ROBOSIM, but also the most difficult. What is
needed is a flexible, but user-friendly, environment in which to design robots.

Before discussing the internals of R2, it is useful to see how it works from a user's
point of view. What follows is basically a user's manual for R2. However, some knowledge
of ROBOSIM is expected. For information see the ROBOSIM manual and tutorial. It is
recommended to read the following while running R2. Proper execution of all capabilities
requires the proper setup of several files and directories. This is explained in the
ROBOSIM manual. Execute R2 from your 'source' directory.

First, R2 is designed to run under Xwindows. Therefore, type xstart to run XWin-
dows. To execute the program type r2 [-t terminal] [-m message level]. The default ter-
minal type is "hp98721". The only other terminal currently recognized is a "hp300h. The
message level refers to the amount of help that is available. The default level is level 0. At
this levelonly error messages are displayed. At level 1, a small window is created in the
upper left comer. Then, whenever the program is waiting for input from the user, an
appropriate message is displayed. Level 2 is the highest level; after any menu item is
selected, a window with information describing the command is displayed. When the
information has been read, the user clicks the mouse on the "OK" button. The user inter-
face consists of the graphics window, where the model is displayed, a line of menus across
the top, a diagram showing the current meaning of the buttons, and a diagram of the knobs
showing their meaning. The use of the button box and knob box in R2 is the same as that in
MD.

MOUSE: R2 is designed to make extensive use of the mouse. The only time at which the
user uses the keyboard is when it would be more difficult to use the mouse. This only
occurs when requesting a file name for the robot, or environment. At all other times,
input is received from the mouse, the button box, or the knob box. To select a menu
move the mouse's cursor until the desired menu heading is highlighted. Now, press
either of the mouse's buttons and hold it. The menu will appear below. While holding
the button down, move the cursor down the menu until the desired menu entry is
highlighted; then release the button. If (before releasing the button) you decide that
the wrong menu has been selected, move the cursor out of the menu and release the
button. If you have already selected a menu item, most functions provide a means to
cancel them with no effects.

Numeric Input window: Many functions make use of this window. It consists of the num-

12

a

a

a

e

0

e

a

e

0

bers 0-9, a decimal point, a minus sign, CANCEL, END, and a set of parameters
(such as radius and height for a cylinder, or X,Y, and Z for translate). When invoked,
all parameters are initialized to zero. However, all objects that are made must have
positive values. To select a parameter move the mouse cursor over the desired
parameter and press the LEFT button on the mouse. Then use the mouse to enter the
desired value. If you make a mistake, simply press the parameter "button" again,
which will set the parameter to zero and allow you to reenter that parameter. When
finished entering parameters, select END. If all is well, the command will be ex-
ecuted. If at any point you decide to abort this command, then press the CANCEL
button in the window.

QUIT MENU:

@it: exits from the program.

Restart: deletes the current model from memory, but does not exit the program.

MAKE ORlECTMENU:

Box uses the numeric input window (described above). This command has three
parameters: X, Y, and 2. These three parameters are the dimensions of the box
along the three coordinate axes.

CyZider: uses the numeric input window (described above). This command has two
parameters: radius and height. The cylinder is created with height along the z-
axis.

Cone: uses the numeric input window (described above). This command has two
parameters: radius and height.

Truncated Cone: uses the numeric input window (described above). This command
has three parameters: upper radius, lower radius, and height.

Sphere: uses the numeric input window (described above). This command has one
parameter, the radius of the sphere.

Specidsurface: This command is used for creating custom objects. You do this by
first creating a polygon and then extruding or revolving it to create a solid

13

a

e

object. The right button selects the starting point. The left button draws a line.
To adjust the scale push the scale button, and enter a value at least two times
the amount of your largest coordinate. The resolution is useful for specifymg the
smallest unit that will be differentiated. If every point is a multiple of five, then
set the resolution to five. (SPECIAL NOTE: you must define the polygon in a
counterclockwise direction for extrude and clockwise for revolve.) WARNING:
DUE TO IMPLEMENTATION CONSTRAINTS IN THE SIMULATOR'S
COLLISION DETECTION ALGORITHM, ALL POLYGONS MUST BE

CAVE POLYGONS IS MADE, SO IT IS THE RESPONSIBILITY OF THE
USER TO PROVIDE THIS CHECK

CONVEX. AT THIS TIME NO CORRECTION OR DETECTION OF CON-

Clone: allows the copying of an object. This is especially useful for copying the
custom designed objects since they require the most work. After selecting clone,
select the object to be cloned, with the mouse.

e

e

a

e

e

e

MANIP OaJECT MENU:

TrmZate: uses numeric input window (see description above). This command has X,
Y, 2, and HOME for parameters. Translations are relative (i.e. they occur
relative to the current position). To return an object to its home position, press
HOME, 'I", and END.

Rotate absolute: uses numeric input window. However, the X,Y, and Z here represent
rotations around the corresponding axes. Rotations are absolute, not additive. If
you specify a rotation on an object, and then later another rotation, the first
rotation is lost and the new rotation is from the objects' home position.

Rotate relative: same as rotate above, except that these rotations are from the current
position.

Delete; waits for you to select an object for deletion. Use the mouse to select the
object. Pressing the left button of the mouse while not on an object cancels this
command.

Attach: lets one object be attached to another object. First, use the mouse to select
the base object, then select the polygon of the base object where the attachment
is to be. Then, select the object to be attached and finally the polygon of the

14

e

0

0

a

attached object. This command will attach the two objects selected such that the
two polygons selected line up. This attachment creates a hierarchy such that the
movement of the base object occurs to the attached object, but a movement of
the attached object will not affect the base object. The new home position of the
attached object is its position as attached to the base object. Once an object is
attached it can not be unattached. The object must be deleted and made again.

Resize: lets an object be resized. It is especially useful along with the attach function.
If several objects are created and attached together, then any of them can be
resized and the relationship between them will be maintained. After selecting
resize, the object to be resized is selected with the mouse. Then a window
identical to the one used to create it appears. Enter the new dimensions, select
END and the object will be resized.

LINKS MENU:

Revolute Joint, Primatic Joint, Fixed Joint: These three commands create a joint of
the corresponding type. After selecting an entry the user is prompted to select
whether it is to be an I-Joint or an I+ 1-Joint. An I-Joint is the place of attach-
ment to the previous link, and an I+l-Joint is the place of attachment to the
next link.

Rotate, Translate, Delete, Attach: These commands operate just like the ones in the
MANIP OBJECT MENU. The reason to have separate commands for joints is
that it is difficult to select them on the screen with the mouse.

a
Check joint sfor vdidity: This command checks the relationship between the I and the

1+1 joint to make sure that it follows the Denavit-Hartenburg convention, as
required by ROBOSIM.

0

a

FILE MANAGEMENTMENU: This menu provides three basic capabilities: save a ses-
sion, load a session, generate ROBOSIM code, and run MD.

SavejiZe: This command saves the current model. The user is prompted as to whether
it is to be saved as an environment file, a link file, or to exit this command. Then
the user is prompted for a robot name and then for an extension.

Loudjile: This command loads a previously saved model. The user is prompted in the

e

a

15

e

same way as save file above.

e

Generate ROBOSIM File: This command prompts first as to whether the file to be
generated is for a robot or environment. Then the name is asked for. The
ROBOSIM file is then generated, ROBOSIM i s called and the file is executed.
Control is then passed back to FU. The robot or environment can now be
viewed by MD, if R2 is running on an hp98721 display.

MD: This command executes the MD program. This allows the robot to be viewed
completely. Does not work with environment files presently. Also, can not be
executed on an hp300h.

HP300MENU: This menu implements some functions on the hp300h. Since this machine
does not have the button box or knob box it is necessary to implement them this way.

Look From: This command uses the numeric input window. Specify the X, Y, and Z
coordinates to look from. At least one must be non-zero.

LookAt: This command uses the numeric input window. Specify the X, Y, and Z
coordinates to look at.

a

e

e

e

Although the interface gives the appearance of an object oriented structure, it is not
implemented in this manner. The basic structure in this program is an array of pointers.
Currently, this is set to a size limit of 100. This means that the most objects that can be in
one link is 100 primitives. However, this number can be set to anything and the program
recompiled. A better structure would be a linked list of objects that is dynamically allo-
cated. At present, however, this method has not been a problem. The actual C structure
declarations are shown below.

#define MAXOBS 100
#define MAXKIDS 10

typedef struct vertex {
float q
float y;
float z;
float md;

} vertextype;

typedef struct {
int SJ; /*source polygon*/
int d-0; /*destination object*/

e
16

e

e

int d g ; /*destination polygon*/
} childtype;

typedef struct object {
char "name;

int vertices;
vertextype *model;
int custom-vertices;
float custom extrude;
vertextype *&tom-modei;
float size[q;
float amat[4][4];
float req4][4];
int display-list;
childtype k i d s m D S] ;

int type;

] objecttype;

e

e

e

e

a

e

e

e

Whenever an object is created, enough memory for a structure of type objecttype is
allocated and the pointer to this memory is stored in the array. All information relating to a
particular object is stored in this structure. The first element in this structure is the name of
the object. This name is actually the ROBOSIM command that is used to generate this
object (Le. BOX, R-JOINT-I). The name also directly corresponds to the next element: the
type. The type is an integer that represents the ROBOSIM command. The variable
'vertices' is the number of points in the model. The variable 'model' is a pointer to the list
of vertices that describe the graphic model. The 'custom - vertices' is the number of points
in the polygon that is used to generate a custom surface (REV-SURFACE and
EXTRUDE-SURFACE). 'Custom - extrude' is used in an extrude-surface object; it is the
amount the object is extruded. The 'custom model' is a pointer to the polygon that is used
in a custom surface. The 'size' array is a-array of parameters that can be used as the
arguments to primitive calls. For instance, if the object is a box, then the first three ele-
ments of 'size' will be used to store the x,y, and z dimensions. The 'amat' variable is a
matrix representing a transformation (rotation and translation) on the object. The 'ref
variable is also a transformation, but it is used to define the home position of the object.
The 'display list' variable is an integer that is the descriptor of the display list in which this
object is stored. The display list is a set of graphics functions that when traversed will result
in the graphic object being displayed. The 'kids' array is an array describing the children of
an object. One object becomes another object's child when the child object is attached to
the parent object. Currently, the maximum number of children one object can have is ten.
However, this value can be changed. Each child is described by three integers. The first,
' s g ' or source polygon is the number of the polygon of the parent where the child is at-
tached. The 'd 0' or destination object is the array index of the object that is attached. The
' dg ' or destination polygon is the polygon of the child object that is attached to the parent.

e

e

17

e

e

e

e

e

e

e

a

e

After an object is selected from the menus and the parameters have been entered, the
object is created. The FORTRAN code that generates the primitives in ROBOSIM is also
used in R2. The use of the same code ensures that what is seen in the editor is the same as
what will be by ROBOSIM. The FORTRAN routines store the vector lists in an array that
is passed to them. After getting this information, the editor stores it in the structure allo-
cated for the object and in a slightly different form in a display list. The other variables in
the structure are filled out, the transformation matrices are set to identity, and a call to the
newly created display list is inserted into the root display list. Now, the next time the
display - list is traversed the object will be displayed.

Once an object has been created (Le. an instance is made of the object), 'messages'
can be sent to it. From the user's point of view, this is what is done. However, the im-
plementation is different. The object is selected by picking it with the mouse. R2 waits for a
mouse button to be pressed and then reads the (x,y) location of the mouse. These coor-
dinates are then used by Starbase to determine what primitive is in that area. Starbase
returns the display list number, a label number (if any), and the offset from the label. With
this information, R2 can decide which object and polygon have been selected.

Translations and rotations result in changes to the transformation matrix: 'amat'. A
matrix representing the appropriate translation or rotation is made and then multiplied by
'amat'. The result is put back into 'amat'. The new 'amat' also replaces the old matrix in the
display list.

Attaching an object to another object is a complex procedure. First the object to be
attached (child object) is selected and then the polygon attachment point is selected. The
same is done for the base object. R2 then knows the two objects and the polygon faces
where they are to be attached. The center points of the polygons are computed along with
the normals to the polygons. Next, the normal direction for each polygon is set to the '2'
axis. Vectors for the 'X' and 'Y' axes must also be constructed for each polygon. Two
matrices are created that represent the positions and orientations for the point of attach-
ment. The inverse of the matrix for the base object is multiplied by the matrix for the child
object. This yields a matrix which describes the transformation of the child object in the
base object's coordinate frame. This is the transformation on the child object necessary to
line up the attach points. This matrix is stored in the child object's 'ref matrix. Also, the
child object's 'amat' is set to identity. This cancels any rotations or translations on the child
object and forces the two objects to line up as specified. Rotations and translations can be
done on a child object but will now be relative to the base object. The base object's 'kids'
array is updated to show that the attaching object is now a child of the base object. The 'ref

e

18

e

0

0

0

0

0

0

matrix is put in the display list for the child object and a call to the child‘s display list is put
at the end of the parent (base) object’s display list.

Deleting an object would be a simple procedure were it not for the complexity intro-
duced by attachments. The simplest method of handling this is deleting all children of an
object that is deleted. However, this is not desirable. Therefore, when an object is deleted,
all of its children are unattached and restored to normal status. One problem exists: child
objects positions are defined by matrices that are relative to the parent object’s position.
Therefore, the child object’s ’ref matrix is not set back to identity, but is instead multiplied
by the product of its parent’s ’ref and ’amat’ matrices. This results in the object not moving
from its current position in the world. One can think of this as a virtual object (invisible
object) existing where the old parent object existed. This virtual object provides invisible
support to the child objects, preventing them from collapsing inward.

Resizing an object is another procedure that would be simple if one did not have to
deal with attached objects. After an object has been picked to be resized and the new
parameters have been entered, a completely new object is created. If it is a child object,
then its parent is looked for. The information regarding attachment points is stored in the
parent. The polygons are the same as before except that the dimensions are different. New
attachment points are calculated based on the new coordinates of the new object and the
’ref matrix is calculated. The ’kids’ array of the parent is modified to point to the new
object and the old object is removed. If the resized object is itself a parent then the old
object’s ’kids’ array is copied to the new object and all of the ’ref matrices of the child
objects are recalculated. Also, all references in display lists to the old object are changed to
the new object and calls to any children are placed in the new display list. The old object’s
display list is removed and the memory allocated to the object is freed.

When the link (or other structure) is complete, it is saved in a form able to be read by
R2. R2 can not take ROBOSIM code and create editor structures from that. Therefore,
one must save any files that might possibly be edited again. After all the links of a robot
have been edited, ROBOSIM code can be generated. Currently, the editor is set up in such
a way that after generating the ROBOSIM code, ROBOSIM is automatically called and the
appropriate filename passed to it. ROBOSIM then generates the link files for the robot. If
the user is on a terminal capable of using MD, then MD is automatically executed with the
robot name passed to it. In this manner, it is much quicker and more flexible to use the
editor, since the user does not have to exit the editor, run ROBOSIM, and then run MD.

R2 generates ROBOSIM code in a fairly straightforward, though not necessarily

19

e

e

e

e

e

e

e

intuitive (especially when looking at the ROBOSIM code), way. The method used resulted
from the difficulties involved in creating more "readable" ROBOSIM code. One method
would have required a breadth-first traversal of the editor's hierarchical structures starting
at the deepest level of the tree (the thickest part). Another method would have required
more registers than ROBOSIM has if there were more than four child objects to any object.
The method used can be thought of as resolving the hierarchical structure dependencies
into a simple list. Remember that the position and orientation of an object affects all of its
children objects by the fact that the children's position and orientation are described in the
coordinate frame of the parent. All that has to be done is multiply all of the transforma-
tions down the tree and get one absolute transformation for each object. Then, the first
object is created, moved and rotated, and then stored in register B. Each additional object
is handled the same way except that register B is added to it and the result stored in
register B. Once all the objects in a link have been processed, a "STORE-LINK" command
is added. Each link is processed the same way until no more links are left.

Pictures 1 through 5 show two links of a robot being built. First, a cylinder is created
and moved to one side. Then, a custom object is created. Next, the custom object is at-
tached to the cylinder. The final steps for this link are a fixed joint attached to the base of
the cylinder and a revolute joint attached to the custom object. Then, the link is saved.
Another link, a simple box, is created. The input and output joints are made and attached
to the link. Then, that link is saved. After these links have been saved, ROBOSIM code is
generated for them and passed to ROBOSIM. The output from ROBOSIM can be seen,
also. Now, the files describing these two links have been created and they can be looked at
with MD. The ROBOSIM code generated for the base link (LOC link) is listed in Table 1.
The structure of the link file generated by ROBOSIM is shown in Table 2.

e

e

e

20

a

e

e

e

e

e

e

e

e

0

e

LOOK-FROM X=-lOO., Y = loo., Z=45.
LOOK-AT X-O., Y=O., Z=8.
CLEAR
STORE B
R-JOINT-I + 1

ROTATE X = -45.000
ROTATE Z=90.000
TRANSLATE x = -5.000, Y = -30.000, z = 55.000

ADD B
STORE B
CLEAR

MOVE X=-10.000, Y=-10.000, Z=O.000
DRAW X=-10.000, Y=10.000, Z=O.000
DRAW X= 15.000, Y = lO.OOO,Z=O.000
DRAW X=25.000, Y =0.000, Z=O.000
DRAW X= 15.000, Y =-10.000, Z=O.000
DRAW X=-10.000, Y=-10.000, Z=O.000
EXTRUDE-SURFACE Z= 10.000

ROTATE X=-90.000
ROTATE Y=-90.000
TRANSLATE x=o.Ooo, Y=-30.000,Z=35.000

ADD B
STORE B
CLEAR

F-JOINT-I
TRANSLATE x=o.000, Y =-30.000, z=-25.000

ADD B
STORE B
CLEAR

CYLINDER R=10.000, H-50.000

ADD B
STORE B
CLEAR

TRANSLATE x=o.000, Y=-30.000, z=o.000

LOADB
STORE-LINK C.LOC
VIEW
END

Table 1. ROBOSIM code generated by R2

21

0

Picture 1: Design of custom made object

ORIGINAL' PAGE
COLOR PHOTOCQADH

D CRilGINAC PAGE
COLOR PHOTOGRAPH

Pictures 2a-b: Cylinder and custom object before and after attachment

ORIGINAL PACF-
COLOR PHOTOGRAPH

Picture 3: Base link with joints being checked

ORlGl” PAW-
COLOR PHOTOGRAPH

Pictures 4a-b: Base link being saved and compiled by ROBOSIM

a

a

a

a

a

a

a

ORIGIKAL PAGE
COLOR PHOTOGRAPH

Pictures 5a-b: First link being saved and compiled by ROBOSIM

e

a

Row

1

2

3

7

11

15

19

20

21

NVEC+19

Variable

THETA
DZ
DA
ALPHA

Col 1 Col 2 Col 3 Col 4

I THETA I DZ I DA I ALPHA I
I JA1 I JA2 1 JTYPE1 I JTYPE2 I

...

...

.....

- JA1 I JA2 -
JTYPE-I,I+1 =
AINERT -
AJNT-I,I+1 =
AMAT
NVEC
Xi I Yi I Zi
Di -

-
- -
- -
- -
-

= Denavit-Hartenberg parameter
= Denavit-Hartenberg parameter
= Denavit-Hartenberg parameter
= Denavit-Hartenberu Darameter

joint defined fla6 *

joint type -> Revolute,Prismatic,Fixed
generalized link inertia
transforms of input and output frames
link's A-matrix
number of vectors in list
x l y , and z component of vector
move or draw vector

Table 2. Structure of Link File Created by ROBOSIM

e

27

2.4 Simulation Librarv and E nvironment

a

e

a

The simulation library and environment provides methods to access the data struc-
tures created by ROBOSIM. The robots and other objects are specified and loaded into
memory. These structures remain resident in memory while the simulation is running. The
library provides an interface to these structures so that the user does not have to under-
stand what is happening at that level. The library provides higher level facilities much like
an actual robot programming language.

The simulation package allows one to use the robots that have been designed. The
package consists of a library of C functions that operate on the files created by ROBOSIM.
Although this package is far from complete, it allows simple simulations to be run. Also, it
provides a framework in which to test the major components for the simulator: collision
detection and dynamics. Having the simulator be a library of C routines allows more
flexible methods for running simulations. Very specific and efficient simulations can be
written in C and which call the simulation functions directly. However, even at this level,
much of the internal data structures is hidden from the user. This level of programming
roughly corresponds to programming a robot in its programming language. For instance,
one can tell a robot to move along a straight line or move a particular joint. A complete
reference of simulation functions available can be found in Appendix 2.1. Using these same
routines a very flexible, user-friendly interface can be built up, allowing an interactive way
to do simulations that are not too complicated, or that do not require great speed.

ROBOSIM provides most of the information required by the simulator by way of the
files it creates. However, some information is not directly provided, but it can be deter-
mined from what is there. This involves the information required by the collision detection
algorithm. ROBOSIM provides the Denavit-Hartenburg parameters, the A matrix, the
pseudo-inertia matrix, and a list of points which describe the physical structure of the robot.
The internal data structure also includes areas that are not currently used, but will be at a
later time. These include minimum and maximum joint angles, velocities, and accelera-
tions. The structure also includes information related to Starbase graphics. The actual C
structure declarations used can be found in Appendix 2.1. The simulation package acts as
intermediary between the user and the internal representation.

The simulation program that the user Writes can turn on collision detection, request
solutions to inverse kinematics problems, and display results graphically. The user can use
the general numerical Jacobian method for inverse kinematics or provide an exact solution

28

e

0

0

e

or

0

for his robot. The user simply passes the address of the function to the simulator, and the
simulator will then use that function when solving inverse kinematics for that robot. A
proposed extension to the simulator will allow the recognition of the twenty-four possible
robot configurations for which exact solutions exist. The exact solutions to these configura-
tions would then be used instead of a numerical method, freeing the user from having to
solve and code it himself. A good use of the simulation system can be found in a later case
study section. This case study uses most of the features of the simulation system, as well as
R2.

The simulation library's commands correspond to real robot programming commands
found in many robot languages. Interfaces to many different robot languagues are planned.
This will allow actual robots to be simulated, and then have a verified program downloaded
to the robot. Additionally, the simulation could be run in parallel with the robot, with a
planner or some other type of higher-level process sending the same commands to the
simulation as well as to the actual robot. This can be used for verification, or even more
importantly as part of a feedback loop to the planner. This will allow the planner to receive
information from the simulation that it can not get from the actual robot. For instance, the
simulation could provide forces and torques if the robot does not have sensors for that.
Also, the planner could check out a plan of action on the simulation before actually driving
the robot. This would let the simulation check for collisions or other dangers without
risking the real robot.

2.5 Inverse Kinemat' ICs

e
The current default method for solving the inverse kinematics problem is the

Newton-Raphson method. This method is an iterative method which uses the Jacobian of a
robot. It is limited to six degree of freedom arms and has many other problems. The
jacobian is a six by six matrix that relates differential changes in joint angles to differential
changes in world coordinate space. In other words, if you take the vector of joint velocities
and premultiply it by the jacobian the result Will be the velocities of the end effector in
coordinate space. Now, if you invert the jacobian matrix, then you have a matrix that
relates differential changes in coordinate space to differential changes in joint angles. Now,
if the robot end effector is at a certain place and you want to know what joint variables
would put it there then do the following procedure.

First, record the current joint angles. Then, compute the jacobian and invert it. Now,

e

29

e

e

0

e

a

a

0

0

subtrace the current position of the robot in coordinate space from the desired location in
coordinate space. Multiply the inverse jacobian by this difference. This yields a set of
differences in the joint angles. Add this set of differences to the joint angles. Compute the
new position of the end effector. Iterate this procedure until the error is acceptable low.

There are many problems with this procedure. First, due to singularities in the
jacobian, the method often does not converge. Second, when it does converge, you get only
one possible solution and there is no way to get the others. Third, it is very slow. However,
there are some robot configurations in which there is no exact solution, and therefore this
is the only general way.

The implementation used does not yield very good results. However, it is faster than
that used in the original ROBOSIM. This probably results from the use of LU decompisi-
tion instead of actually computing the inverse of the jacobian. For example, if you are
trying to solve the matrix equation (Y = JX) for X, one way would be to invert J and
premultiply both sides by that. However, there is a faster way to solve this. J can be ex-
pressed as the product of two matrices, an upper diagonal matrix and a lower diagonal
matrix. With J in this form, X can be solved by back substitution.

The best way to solve the inverse kinematics problem is to provide the exact solution.
Although this is usually difficult, there are only 24 distinct configurations. This means that
if a robot has an exact solution, its inverse solution can be expressed by one set of equa-
tions out of a possible 24. Currently, only one set of equations is implemented: the one
corresponding to the PUMA 560. However, it is in a general form, in which six parameters
(the lengths of the links) can vary. This method also allows one to get all possible solutions
to the problem. In this way, additional constraints can be checked for, such as limitations of
joints and checking different solutions to find one that does not collide with itself or other
objects. This method is also faster by two orders of magnitude. Also, most commercially
available robots have configurations that have exact solutions. It is not possible to run a
simulation in real time using the numerical method, at least not without a floating point
accelerator.

The only other method involves solving for five of the six joint angles analytically and
using the Newton-Raphson method on one joint. This method will work on some configura-
tions that do not have exact solutions. The usefulness of the method is better, yielding more
solutions than the full Newton-Raphson method. In addition, the numerical part of the
algorithm is not as sensitive to singularities, since it involves only one equation. This
algorithm is not currently provided in the simulation, but the user could provide his own.

30

Collision Detect ion

0

Collision detection is very important in simulation of robots. One usually wants to
know if the robot has collided with its environment or with itself. The following discussion
does not delve into the theory behind the methods used, nor does it give an overview of
collision detection. For a complete discussion of collision detection methods see Walter’s
dissertation from Cornell. The collision detection algorithm implemented here is very
similar to the POCODA (Polygon Collision Detection Algorithm) algorithm given by
Walter. The implementation used is given with special emphasis on those extensions to
POCODA.

The algorithm used can be broken down into several subalgorithms. These will be
discussed from lowest level to highest level. The assumptions used here is that all objects
are defined by convex planar polygons. The problems involved in collision detection are as
follows. Given a polygon and a point in the plane of the polygon determine whether that
point is inside of the polygon. Given a polygon and a line segment determine whether the
line segment crosses the plane of the polygon. Given two polygons determine whether they
intersect. Given two objects determine whether they intersect. Given two bounding
volumes around two objects determine whether they overlap.

The one equation to keep in mind throughout this discussion is the plane normal
form of the plane equation.

e

0

phi(P) = N . P + nd

Where:
N: normal to the plane
P: point
nd: distance from plane to origin

The plane described by this equation is the set of points P such that phi(P) is zero.
Also, given N, nd, and a point P, the residue (phi) is zero if P is in the plane, positive if P is
above the plane, and negative if P is below the plane.

The point-in-polygon problem is the most time-consuming operation. The method

31

I

I

e

used to solve this problem is the reason why the polygons must be convex. The algorithm is
to follow the polygon’s edges around the polygon checking to see which side of each edge
the point is on. If the point is to the same side of each edge then that point is inside of the
polygon. This is checked by substituting the point into each edge’s penalty function. The
penalty function is a plane equation such that the edge lies in the plane and the plane is
perpendicular to the plane of the polygon. The penalty function is calculated once for each
edge and stored in the internal structure. See Appendix 2.1. for the C simulation structure.

pen(P) = M . P + md

e

e

M is the normal vector to the penalty plane; it is the cross product of the normal to
the polygon plane and the directed edge normalized with respect to the directed edge. md
is the distance of the penalty plane from the origin. This penalty function can now be used
to determine which side of an edge a point is on.

The algorithm for determining if a line segment crosses the plane of a polygon should
be obvious from the above discussion. The two endpoints of the line segment are both
substituted into the equation of the plane in which the polygon lies. If the residues of the
two points are the same sign then both points lie on one side of the plane. Therefore, the
line segment did not cross the plane. If, however, the residues have different signs, then the
point at which the line segment crosses the plane must be determined so as to use it in the
point-in-polygon algorithm. Given two points P1 and P2 which are the endpoints of a line
segment and phi(P1) and phi(P2) which are the residues of P1 and P2 in the polygon plane,
then the point along the line segment that intersects the polygon plane is Pc,

32

a

e

Each object in a simulation is composed of polygons, but due to speed and efficiency
requirements the above tests would be prohibitive. Therefore, some simpler tests are
required which can quickly eliminate some objects from the more exhaustive tests. The
method used is to perform tests on bounding boxes of the objects. A bounding box is
described by a point and a vector. The point is the center of the box, and the vector is the
half-diagonal vector of the box (Le. it points from the center of the box to a corner). These
values are determined by first determining the maximum and minimum values of the object
along the x, y, and z axes. The center is calculated by averaging the maximum and mini-
mum values along each axis. The half-diagonal vector is calculated by taking half of the
difference between the maximum and minimum along each axis. For instance, along the X
axis:

a
Xmax + Xmin

e

0

e

a

Now, two bounding boxes overlap if the distances between the centers along every
axis is less than the sum of the half-diagonal components along the corresponding axes.
However, the two bounding boxes must be defined in the same coordinate frame. Typically,
each object is defined in its own coordinate frame and has a transformation matrix describ-
ing the position and orientation of the object in the world coordinate frame. Therefore, a
method is needed to transform a bounding box from one frame to the other. Given two
bounding boxes, B1 = {Cl,Dl} and B2 = {C2,D2}, and two transformations T1 and T2
which are 4x4 matrices describing position and orientation of boxes B1 and B2, respec-
tively, let C1,2 and D1,2 be the center and half-diagonal vector of B1 in coordinate frame 2.

c1,2 = [Cl][Tl]([T2]-1)

e

e

D1,2 = D1 @ [Tl]([T2]-1)

33

a

a

a

where @ is the dilation product, an operation between two matrices which can be
expressed as the product of two matrices whose elements have all been changed to their
absolute values.

In order to test for bounding box overlap given two boxes, one first has to express B1
in coordinate frame 2 and check for an overlap. Then convert B2 to coordinate frame 1 and
check for an overlap. Only if both checks indicate an overlap is there one. If an overlap is
indicated then further checks have to be made to determine if there is a collision.

a

a

a

a

a

Once a possible collision is indicated by overlap of bounding boxes, more exhaustive
tests have to be performed. First, all points in one object must be transformed to the other
object’s coordinate frame. This can be done using Eq. 8 above where C1 is a point in object
1. Once this is done, a first approach would be to check every edge in each object against
every polygon in the other object. However, there are some ways to reduce the number of
edges which must be checked. First, each edge in object 1 is checked against the bounding
box of object 2. Only if the edge falls within the bounding box could it intersect the object.
Each edge that could intersect a polygon is saved in the reduced edge array. Now, each
edge in the reduced edge array is checked against the polygons in object 2. However, each
polygon from object 2 is first checked to see if the plane it lies in could intersect the bound-
ing box of object 1. If it does not, there is no need to check edges against it. Finally, each
possible edge is checked against each possible polygon, using the methods described above,
to determine if a collision exists. If not, then all points of object 2 are transformed to the
frame of object 1 and the procedure repeated. The following summary is from Walter’s
thesis.

1. Compare the bounding boxes of each object.

(a) If the bounding boxes overlap then the likelihood of a collision is high and
further checks are required, and the procedure continued.

(b) Otherwise the two objects cannot possibly collide. They may be declared
collison-free, and the procedure is exited.

2. The objects are transformed to a common reference frame by tranforming the
points of j into the reference frame of k. The new object is referred to as (j,k).

a

3. Edges in (j,k) are compared with the bounding box of k.

34

e

e

0

e

e

e

0

(a) If an edge intersects the bounding box it is retained for further tests by insert-
ing it into the reduced edge array.

(b) Otherwise the edge is excluded from further tests.

4. Check each polygon in k.

(a) Check whether the polygon plane intersects with the bounding box of (j,k). It
means comparing the polygon against all the reduced edges in (j,k).

A. If the polygon intersects with an edge then a collision has occurred, and
the procedure is exited with a collision condition.

B. Otherwise, continue until all edges are considered.

(b) Otherwise, the polygon cannot possibly be a source of collision, and is ex-
cluded from further tests between the two objects.

5. Evaluate progress.

(a) If this is the first time to this step then, interchange the roles of j and k and
repeat all steps after (2), since a collision is still possible, although undetected
this far.

(b) Otherwise, the two objects do not collide. They may be declared collision-free,
and the procedure exited.

This algorithm is the one used in the simulation library and environment with one
difference. At step 3, Walter checks every edge in (j,k) against the bounding box of k. A
much simpler first check is to check the plane of the polygon that contains the edge against
the bounding box first. If that polygon does not intersect the box, then all the edges of that
polygon are excluded. This is a much faster check than checking an edge against a box. This
is similar to what is done for the k object in step 4.

ROBOSIM does not directly generate all the information required for collision
detection. However, it can be calculated from what is provided, namely the vector list. The
vector list is a list of points that define the pdygons of the object. This vector list is split
into separate polygons as it is read from a file. Then the normal and normal distance for

e

35

a

e

e

e

e

e

e

e

e

e

each polygon is calculated and stored. Next, the penalty function for each edge is calculated
and stored. As the vector list is read in, the maximum and minimum x, y, and z values are
saved and used to calculate the bounding box. The internal data structure now contains all
of the information necessary for collision detection.

The use of this algorithm requires some special considerations when used with robots.
The technique used employs a bounding box around each object in the environment, a
bounding box around each link of each robot, and a bounding box around each robot. The
bounding boxes around each object and each link are computed at load time, but the
bounding boxes around robots must be computed as needed. This is because the bounding
boxes around robots change as the joint angles in the robots change. Whenever a collision
is checked for, bounding boxes are created around the robots. They are calculated by using
the bounding boxes around the links. The minimum and maximum extents along the x, y,
and z axes of the bounding boxes around the links are computed. Then a bounding box
around all these bounding boxes is computed €tom the minimum and maximum extents.
The purpose for bounding boxes around robots is that if there is more than one robot, even
bounding box checks become expensive. If there are two robots, each with nine links (6
movable and 3 f'ked), 81 bounding box checks would be required every time. And if there
were three robots, 729 bounding box checks would be required. With three robots, and
therefore three bounding boxes, only three bounding box checks are required. If there is a
collision between two bounding boxes, only the two robots need be checked.

Previously, there was a transformation matrix associated with each link that described
the coordinate frame of that link with the previous link. This is not adequate for collision
detection, however. This matrix can be obtained by multiplying all of the matrices of the
previous links together, yielding a transformation of the current link in the world coor-
dinate frame. It is much simpler, and faster, to calculate this matrix for each link whenever
joint variables are changed in the robot rather than waiting until needed by collision
detection. This is especially true since collision detection checks are made from the end
effector inward, as a collision is more likely with the end effector. Whenever a joint vari-
able in a robot is changed by a library function, the transformation matrix of the link in the
previous link's frame as well as the world frame is calculated and stored in the link's struc-
ture. Then, it is used by the collision detection algorithm as needed.

Another problem that requires special treatment is collisions involving the robot with
itself. This is especially difficult when one considers that the design of the robot may
include overlap of adjacent links. If this is the case, then if links of the robot are checked
with other links of the same robot, then collisions might be seen that aren't really valid.

e

36

a

a

a

a

a

a

a

a

a

Therefore, collisions are not checked for against adjacent links. The simulator has internal
provisions for joint constraints. Therefore, any possible collision could be provided for by
limiting the joint angles. However, given legal joint values, it is possible for non-adjacent
links to collide. Therefore, collision detection of the robot with itself must be made. Given
a nine link robot, 28 bounding box checks must be made to ensure no collisions with itself.
However, this self-collision detection may be controlled separately (Le. it can be turned on
and off independently of the other collision detection), since the user may not require these
tests.

Since many objects and robots may be loaded before they are actually used in the
simulation, the collision detection uses the list that is created by the USE command. The
USE command adds its argument to a linked list of objects, and inserts a call to it in the
display list. Therefore, it will be displayed when the display list is traversed. Also, the
collision detection uses the linked list of objects to check for collisions. If an object is not in
use, the collision detection does not waste time checking it.

Once collision detection is turned on, checks for collisions are made any time the
library functions are used to move a robot. If there is a collision then a collision structure is
filled out. This structure returns pointers to the objects and link numbers if the objects are
robots. The library functions pertaining to collision detection are included in Appendix 2.2.

The collision detection algorithm has only two weak points. It does not handle con-
cave polygons, and it will not signal a collision if one object is completely inside of another.
The stipulation concerning concave polygons is not serious. ROBOSIM does not generate
concave polygons unless they are the result of an custom object. Although R2 does not
check for concave polygons, this feature could be implemented. In fact, algorithms exist to
split concave polygons into convex polygons. Either of these features could be implemented
fairly simply. The problem of not detecting a collision if one object is completely inside
another derives from the fact the algorithm used is a polygonal collision detection algo-
rithm and not a solid object one. However, assuming two objects start off outside of each
other and movements are sufficiently small, then this should not prove to be a problem.
This condition also prevents the ability of one object to pass through another (i.e. a move-
ment is large enough that two objects do not overlap at any point). This algorithm does not
detect collisions in the volume swept by an object moving between positions with another
object, but rather only overlap of the objects at the starting and ending positions. But, if the
distance between the positions is smaller than the smallest object, then there should be no
problems.

a

37

a

e

e

The collision detection has been implemented very effectively. The low level collision
routines require transforming points in one coordinate frame to the other. This requires
multiplying all points by a transformation matrix. The Starbase graphics package provides
routines to do this, as well as to multiply 4x4 matrices together. When there is a graphics
accelerator in the system, Starbase uses it to do the calculations. This allows matrix multi-
plication as well as transformation of points to be done in hardware, which is much faster
than in software. e

2.7 Surgical Positionel:

e

e

e

e

e

e

Everything described up to this point has been tested, and is in use. R2 and the
simulation package are being used presently to aid in designing a kinematic surgical
positioner. Its application would be specifically for brain surgery. The idea behind it is this:
the robot would not be capable of motion on its own. It would be attached to a surgical
collar, and after calibration would be positioned by the surgeon, with joint encoders sen-
ding the values of the joint angles to a computer. The computer would show the position of
the robot superimposed on a CAT scan. In this way, a surgeon can quickly determine points
of entry. Currently, this is accomplished by precomputing where the points would be and
then determining them using the collar as a reference. Having a way to immediately see
what the positions are would prove to be much more flexible. Additionally, a hollow tube
could be attached to the end effector. With this, the robot could maintain a particular
orientation while the surgeon takes a biopsy.

Current research is to determine whether a robot of sufficient accuracy can be built.
ROBOSIM provides an excellent test bed to perform this development. R2 has been used
to design the arm and specify the dimensions of the links. A basic configuration similar to
that of the PUMA 560 has been used. Therefore, an exact inverse kinematics solution exists
and is used. The simulation library and environment is used to test the arm. The tests
include ability to reach all the required points on the head (without passing through it).
The inverse kinematics equations generate eight different solutions. These solutions are
checked using the collision detection algorithm to ensure that there exists at least one
which will reach the desired position without touching the head.

An additional requirement is that the positional accuracy of this robot be small.
However, the size and cost are also important factors, so the smallest joint encoders would
be desirable. The relation of world positional accuracy to joint accuracy is fairly easy to

e

38

a

determine. Given a joint encoder of a certain number of bits, the accuracy is the range
divided by two to the number of bits. This gives an angular measure of the amount a joint
encoder could be off. This is used with the jacobian to determine the maximum positional
error. The jacobian relates differential changes in joint angles to differential changes in
world coordinates. The error in position caused by each joint is first determined. Then, the
s u m of the errors is computed. This gives the maximum amount that the positioner could
be off. (It assumes each joint is off in the direction to give maximum error.)

Once a robot is generated, the simulation can run without the user. Ail data is saved
in a file for later analysis. The simulation can run without displaying any graphics, or the
user can watch it as the robot is put through its paces. The part of the simulation written by
the user is shown below. It is not a general type of simulation that would be applicable to a
wide variety of problems. However, it is sufficiently general in that it encapsulates the
requirements of the project, but it does so without being limiting. For instance, the require-
ments are that it reach certain points on a head (cylinder) without any part of the robot
touching the head. The user cycles through the points that are required, and the simulation
sends back information concerning whether the robot specified can reach the points
without colliding with the head.

#include "sim.h"
#include < math.h >
#include stdi0.h >

#define TRUE 1
#defme FALSE 0

int i;
FILE *fopen(), *fpout;
int puma - in@;

S h O

{
ROBOT r l = 0 ;
OBJ ol=O;
JOINT array;
float J[6][6];
float angle;
extern COLLISION S CO;
char *filename= "testkt";
float m[4][4];
float C O W = M - PI/180.;

/*

*/
* PRE does transformation along world axes

r l = GET ROBOT("/users/robosi/source/manipulato~/jo/m~els~);
PRET~SLATE(rl,25.,0.,0.);

39

e

e

e

e

e

e

USE(r1);
01 = GET OBJ("/users/robosim/source/manipulators/);

USE(o1);
C SWITCH(TRUE);
SET - IW(r1,puma - inv);
/*
* cover head in increments of lcm over the length and 5 degrees
* from 75 to 295 output results to fie testout
*/

fpout = fopen(fiename,"w");
setjoint-error();

for (i= -2Q i<21; i+ +) {

PRETRARSIATE(O~,O.,O.,O.);

for (angle=O.; angleclOS.*COW, angle+ =S.*CONV) {
get-location(angle,m);
fprintf(fpout,"\n");
fpMtf(fpout,"%5.2f %5.2f %5.2f %5.2f %5.2f %S.Wn",

if(KIW(rl,m,array,TRUE)) {
~ ~ ~ ~ l , ~ ~ ~ ~ l , ~ ~ ~ ~ l , ~ ~ ~ ~ l , ~ ~ ~ ~ l , ~ ~ M ~ ~

JACOB(arr a y,J);
error(J);
if(!MOVEJI(rl,array,l)) {

printf("collision, y = %d, angle = %qn",i,angle);
printf("link %d\n",S-CO.Ll);

1
1
else {

fprintf(fpout,"point did not converge\n");
printf("point did not converge\n");

1
1

e

e

e

e

1
fclose(fpout);

1
get location(j,m)

tioat j;
float m[4][4];

{
m[2][0] = -cos(j);
m[2][2] = -sin(j);
m[2][1] = 0.;
m[O][O] = m[O][2] = 0.;
m[O][l] = 1.;

m[3][0] = (float) -20.1* m[2][0];
m[3][2] = (float) -20.1* m[2][2];
m[3][1] = (float) i;
m[O][3] = m[l][3] = m[2][3] = 0.;
m[3][3] = 1.;
return(1);

cross(m[2l,m[Ol,m[ll,l.);

1

e

e

0

0

e

e

e

e

float NUM BITS[] = { 12.0, 12.0,12.0, 12.0, 12.0, 12.0);
float single~oht-error[6];

setjoint-error0

int i;
for (i=O; i<6; i + +) {

1

{

singlejoint - error[i] = 2.*M-PI/pow(2.O,NUM-BITS[i]);

1
error(m)

float m[6][6];

int 4; {

float err[6];

for(i=O; i<6; i+ +) {
err[i] = 0.;
for(j=O; j<6;i+ +) {

1
err[i] + = (float)fabs((double)m[i]~] * singlejoint - errorfi]);

1
fprintf(fpout,"dX = %f dY = %f dZ = %f",err[O],err[l],err[2]);
fprintf(fpout," rX = %f rY = %f rZ = %fin",err[3],err[4],err[q);
fprintf(fpout,"distance error %fin",

(float) sqrt((doub1e) err[O]*err[O] + err[l]*err[l] + err[2]*err[2]));
1

Currently, various configurations with twelve bit joint encoders are being investigated.
It appears that twelve bit encoders will provide the necessary accuracy. The use of R2 and
the ability to resize objects provide a simple means to quickly create a new configuration.
The generalness of the simulation library allows the same simulation to be used with no
modification. A detailed description of the simulation library commands is provided in
Appendix 2.2.

APPENDIX 2.1 Structu re Declarations for the Simulation Library

This Appendix contains all structure declarations used throughout the code of the
Simulation Library. The declarations are given using the conventions of the C program-
ming language, since the Simulation Library itself was coded in C.

0

typedef float (*S_VECTOR)[3];

41

0

0

struct spnal ty {
float pen norm[3];
float penIdiit;

1;

a

a

1

typedef struct s p l y {
float norm[3];
float nd;
int vecgtr;
int num-vectors;
struct sgenalty *pen;

} *s-POLY,

typedef struct s-link{

e

int num-vectors;
S-VECTOR listgtr;
float *md;
int display list;
float bbc[a /*bounding box center*/
float bbd[4]; /*bounding box half-diagonal*/
float INERT[4][4];
float CURR[4][4];
int numgoly;

flGat theta,dz,da,alpha;
int jtypeljtype2;
float JNT1[4][4];
float JNTy4][4];
float AMAT[4][4];
float TRANS[4][4];
float curr-var;
float min-var;
float max var;

s POLY poly,

*S-LINK;-

struct s-robot{
int num links,
S LINI&dc[l8];
Gat ~re[41[4];
float Post[4][4];
float DH[18][5];
int display list;
float POS[;i][4]; /*matrix describing position of robot in environ*/
int (*INV - KIN)(); /* pointer to function that solves inverse kin */

1;
struct s-env{

int num-vectors;
S VECTORlistgtr;
flGat *md;
int display list;
float bbc[a /*bounding box center*/
float bbd[4]; /*bounding box half-diagonal*/

e
42

0

float INERT[4][4];
float POS[4][4];
int numply;
s - POLY poly;

1;
/* this is a copy of s-env, however it is also the generic type */
/* of which link and obj can be cast into */
struct s_gen{

int num-vectors;
S VECTORlistgtr;
flzat *md;
int display list;
float bbc[q /*bounding box center*/
float bbd[4]; /*bounding box half-diagonal*/
float INERT[4][4];
float POS[4][4];
int numply;
s - POLY poly;

1;
struct s-obj {

int num-vectors;
S-VECTOR listgtr;
float *md;
int display-list;
float bbc[4]; /*bounding box center*/
float bbd[4]; /*bounding box half-diagonal*/
float INERT[4][41;
float POS[4][4];
int numply;

flzat DIFF[4][4];
s POLY poly;

1;
typedef struct s any {

int
int in-use;
union {

type; /; 0 =robot 1 = env 2= obj */

struct s robot *r;
struct sIenv *e;
struct s-obj *o;
1 obj;

} *S-ROBOT,*S-ENv,*S-OW;

typedef struct s list {
struct s-any %ern;
struct s list 'next;

} s - LIST:

typedef struct s collision{
struct s - any 31;
int L1;

43

a

a

0

a

a

a

a

struct s-any *S2;
int L2,

} s - COLLISION,

typedef float S - POINT[3]; /* X Y Z */

typedef float S - ORIENTATION[3]; /* ROLL PITCH YAW */

typedef float S - LOCATION[6]; /* X Y Z ROLL PITCH YAW */

S ROBOTS GET ROBOT();
SIENV S-GET Em();

G d e f fl%at S-JOINT[l8];

typedef float matriA[4][4];
struct matrix - struct { m a w msxform; };

#define S REPLACE MATRIX_3D(dest,src) \

s OBJS GET-~BJO;

*(struccmatrix - struz *)(dest) = *(struct matrix - struct *)(src)

APPENDIX 2.2 Simulation Library Functions

This Appendix contains the interface declarations to the functions of the Simulation
Library. The declarations are given using the conventions of the C programming language,
since the Simulation Library itself was coded in C.

S - GET ROBOT(fdename)
char ‘fdename;

S-GET - ENV (filename)
char *filename;

S - GET OBJ(fdename)
char =fiename;

S - PRETRANSLATE (o,x,y,z)
s ANYo;
Gat x,y,z;

s-POSlTRANSLATE (o,x,y,z)
s-ANY 0;
float x,y,z;

S - PREROTATE(o,x,y,z)
s - ANYo;

a
44

a

e

e

e

e

e

e

e

e

e

e

0

float x,y,z;

s ANYo;
Gat x,y,z;

S - POSTROTATE (o,x,y,z)

S -MOW (rjohts)
S ROBOTr;
S~JOINT joints;

S - CLEAR-JOINT (joints)

S-MOW1 (rjoints,steps)

S - JOINTjoints;

S ROBOTr;
S-JOINT joints;
in? steps;

S - USE(o)

S - DONTUSE(o)

S-CHECK (0)

S-CHECK-ROBOT (r)

S-C-SWITCH (x)

s - ANYo;

s-ANY 0;

s - ANYo;

s-ANY 0;

intx;

S-COLLIDE ()

SSET-INV (r, inv - hncgtr)
S ROBOTr;
iii (+inv-funcgtr>();

S-KINV(r, dlm, joints, reset)
S ROBOTr;
&at dlm[41[4];
S JOINT joinw,
in? reset;

S JACOBGoints, jac)
S JOINT joints;
flzat jac[6] [6];

s-translate (mat,x,y,z)
float mat[4][4],x,y,z;

s-rotate (mat,x,y,z)

45

float mat[4][4],x,y,z;

s-rotatez (mat,z)
float mat[4][4],z;

s-transpose (mat)
float mat[4][4];

s - invert (mat)
float mat[4][4];

a

a

a

a

a

46

3. INTELLIGENT GRAPHICS MODELING ENVIRONMENT

e

e

e

e

e

e

e

The ROBOSIM package, together with the enhancements described in the previous
chapter, provides a powerful graphic tool for designing and simulating geometrical objects
(including robots, of course) using an engineering workstation. But the real power of this
approach can be utilized only by integrating the services of a graphic modeling toolkit with
knowledge-based techniques. This chapter describes the ongoing research efforts to create
such an integrated modeling environment. First a critical review of the current graphical
modeling techniques is given, followed by the system design and implementational con-
siderations of an enhanced graphics modeling and simulation package. Finally the
knowledge-based techniques developed at Vanderbilt for the integration of large-scale
engineering systems (instrumentation, control, robotics, simulation, etc..) are summarized.

3.1 Critique o f the Current Graphics Modeling Technique

The extensions to the ROBOSIM package described in the previous chapter greatly
enhanced its capabilities in modeling different geometrical objects and systems. But we
think that a graphics modeling environment should provide some additional features in
order to fully utilize the potential of knowledge-based techniques in the graphic simulation
of geometric systems. These additional features are summarized below:

Need for separate representation of objects: Currently the ROBOSIM modeling environment
does not support the separate representation of different graphic objects in its
workspace. The dispZay lists representing these objects are concatenated together
every time a new object is added to the system. This makes the modification of
complex objects very difficult, because the whole ROBOSIM command sequence
creating the complex object must be re-executed whenever one of its parts is
modified. This is especially a problem during the editing phase, since such operations
are quite frequently needed here. The solution would be to maintain these objects
separately -- at least during the editing phase of the modeling. On the other hand,
concatenating together the parts of a complex solid object would speed up the graphic
simulation, so the desirable solution is to maintain both representation forms and use
the appropriate one for each step of the modeling process.

47

e

e

e

e

e

e

Need for more graphics objects in the workspace: A large graphics simulation program
typically contains several independently moving objects. The programming model
offered by ROBOSIM (graphic registers) limits the number of these objects - i.e. the
complexity of the systems which can be modeled with it. The desirable solution is to
allocate the graphic objects dynamically, which does not limit their number. Then
each of these independent objects could be controlled separately during the simula-
tion.

Multiple aspect object representation: Many of the enhancements to the ROBOSIM package
(collision detection, dynamics, etc..), described in the previous chapter are basically
"add-on" packages to the original system, with separated data representation schemes.
The system design could be made much more understandable if a central data base
would be used, containing every aspect of the models stored in it.

The next parts of this chapter describe the system design of a planned graphics
modeling environment which provides the features outlined above. We expect much of the
already existing ROBOSIM code to be reusable, together with the code for the extended
features described previously. Unlike the work described in the previous chapter, this is a
system currently being specified and developed.

e
3.2 Svstem DesiFn of the Graphic Simulation Environment

e

e

e

The system design of the proposed structural modeling environment can be seen in
Figure 1. It includes two data bases - the Instance Space and the Library Space - with
several 'active' components operating on them. The Instance Space contains all data
structures which describe the current simulated system. It contains data structures describ-
ing:

1. the geometrical properties of the entities of the world model,

2. the part-whole relationships between the entities,

3. the information necessary for displaying these entities (display lists),

4. the information necessary for the collision detection algorithm,

e

48

e

e

Simulation - User High-Level Simulation - - Facilities
Interface

c

e

- -
X-mdaeb

h l e r -
1.E.

ete... e
I 1
e o

e m
0 1

e

I
0 -
1

Ptclur'

0

0

2 Library Space

4 1

File Interface

e

Figure 1. Main functional components of the structural simulation environment

5. the information necessary for the forward and inverse kinematics simulation of the
system (either in the form of data necessary for the default iterative methods, or in
the form of analytical equations if these are available), and

6. the information necessary for the forward and inverse dynamic simulation of the
system.

Basically the Instance Space contains all the information which was necessary to
operate the models in the enhanced ROBOSIM package described in the previous chapter,
but in a much better structured form. Unlike in ROBOSIM, where there was a limitation

e

49

e

a

0

e

on the number of objects which can be handled by the system (fiied number of graphics
registers), the objects in the Instance Space can be generated dynamically with no preset
limit on their number or complexity.

In many cases the objects in the Instance Space are complex structures built of either
less complex structures or elementary building blocks (like boxes, cylinders, spheres, etc..).
Frequently there are objects having the same structure but with different parameters of
their building blocks. The purpose of the Library Space is to store structural declarations of
these complex objects which can be instantiated with the desired parameters whenever a
new entity has to be generated in the Instance Space. This way we can avoid having to build
these objects from scratch.

The Instance Space and the Library Space are implemented as data structures shared
by the other active components shown in Figure 1. These components are implemented as
separate parallel processes accessing the above data structures using the shared memory
services of the host computer. This way only those which are necessary for the currently
running simulation have to be loaded. These separate active components include:

1. The Structure Editor which can be used to build objects either in the Instance Space
or in the Library Space.

2. The Display Interface which transforms the Instance Space objects into executable
graphics primitives. The reason for introducing this interface was that the object
representations of the Instance Space can be machine-independent, since the actual
machine-dependent graphics format conversions will be done by this module.

3. The File Interface provides the services to save and restore the objects in the
databases.

0

4. The Simulation Package operates on the entities in the Instance Space and performs
operations similar to those of the ROBOSIM simulation library described previously
(moving objects, collision detection, kinematics and dynamics calculations).

5 . The Simulation User Inteface provides the features for the interactive control of the
operations contained in the Simulation Package.

6. The High-level Interface Package provides access to the services of the other active
components from knowledge-based application programs, like task planners, etc..

e

50

e

a

Many of the components described above have already been specified and are cur-
rently being developed. Next we give a description of the internal details and current status
of those components where such information is already available.

53 Deta iled Description of the Co mDonentS -

0

a

e

The data structure specifications for the two shared databases were completed first,
since they influence the design of the other components. Both data bases contain structures
which can be allocated dynamically, and care was taken to ensure that the specifications do
not contain built-in ’static’ limits regarding the number or complexity of the objects. There
is an interface library associated with both shared data bases which provide unified object
creation, access, etc.. services for the other active components.

The Instance Space contains the system’s working structural model object set. Some-
times it contains redundant data if it speeds up the operation of the different active com-
ponents. For example, the graphics display module can utilize the polygon list repre-
sentation of a solid object most effectively, while the collision detection module operates
on the edge list. In such cases we decided to store both (or all necessary) representation
forms in order to gain as much execution speed as possible at the expense of a somewhat
higher load on memory. The access library associated with the Instance Space contains
services to create access and destroy objects, and there is an additional shape generator
library (derived form the original ROBOSIM code), which can fill out these data structures
with the graphical representations of the higher-level geometrical entities they represent.
The Instance Space objects themselves do not contain information regarding their origin,
only the data necessary to ’operate’ them. All objects are dynamically typed, and the
operations ’know’ how to perform an action on the given type. Next we give some
(simplified) examples about the data structures stored in the Instance Space:

I**
** ROBOS1M.NEW.H

** structure definitions for new ROBOSIM (draft version)
**

**I
typedef struct {

double mq
double y~,
double zz;

1 p i n t ;

51

e

e

e

0

e

e

e

e

typedef p i n t -bboQ2];
typedef double -trmat[4][4];

#defineTP POINT
#define TP-LINE
#define TP-POLYLINE
#define TP-POLYGON
#define TP-SOLID
#define TP-JOINT
#define "€-LINK
#define TP-ROBOT
#define TP-ITEM
#define TP-SCENE - 10

typedef struct {
int

typedef struct {
int
int
p i n t
p i n t

} o - line;

typedef struct {
int
int
int

} oplyline;
p i n t

typedef struct {
int
int
int

double
p i n t

p i n t
1 oplygon;

type;
coords,

type;
color;
start;
final;

type;
num-ofpints;
color;
pts[lI;

type;
num-ofpints;
color;
normal diq
normal-dist; -
pts[lI;

typedef struct
int
int
struct
struct
trmat
trmat
- bbox
struct

-
-

- solid {
type;
color;
- solid *next solid;
- solid *parts;
*transf;
*inertia;
bounds,
- object *origin;

/* actual number might change */

/* points to the editor structure
which caused its creation */

int num-o fplygons;

e
52

e

0901ygon *PO~YSC~I;
} 0-solid;

#defineTP REVOLUTE J 20
#define "P-PRISMATIC-J - - 21

typedef struct {
int type;
int subtype; - trmat jntparams;
double uim;
double hlim;

} ojoint;

typedef struct {
int type;
int num-of-outputs;
o solid*shape;
o2oint *injoint;
ojoint **outjoints;
trmat a - matrix[l];

} o-lac;

typedef struct {
int type;
int nun of links;
O - h k *li&[l$

} o-robot;

/* actual number might change */

typedef struct {
int type;

oline line;
oZpolyline plin,
0901Ygon Poly,
o solid solid;
oIrobot rob

} *item; - trmat place;

union obj {

} o-scenepart;

typedef struct {
int type;
int num-of-it ems;
o-scenepart *parts;

} o-scene;

/**
** ALLOCAT0R.H

**

#include "robosim.new.h"

I*

definitions for the new ROBOSIM workspace memory allocator
**/

53

e

e

init memory();
free - - all objectso;

- trmat *make - trmat();

e

e

e

e

e

e

e

ogoint *makepint();
o line +make line();
ogOlyline *makeplyline(?+ int num-ofpints */);
oplygon *makeplygon(/* int num-ofpints */);
o solid
o-joint *make-joint();
olink
oIrobot
o-scenepart *maki-scenepart();
o-scene

void

** BU1LDER.H

*+

#include "robosim.new.h"

*make solid(/*intnum - - of faces*/);

make robot(/ &t num - - of link?/$

make - scene(/ int num - ofgarts */);

+make link(/* int num of outjoints */);

free - object(/+ result of any of the above calls*/);
I**
**

definitions for the new ROBOSIM primitive object generator routines
**I

oplygon *buildplygon(/* color,numpts,xl,yl, ... xN,yN */);
o solid +build-box(/* x,y,z */);
oIsolid *build cylinder(/* r,h,numfaces */);
o solid *buildrcone(/* r,h,numfaces */);
oIsolid
o - solid 'build-sphere(/*-r,numfaces - */);

o solid *Ben extrude(polygon,height);
o-solid - *genIrevsurface(polygon,angle,numfaces);

build truncated cone(/ rl,rh,h,numfaces */);

void tr translate(object,x,y,z);
void tr-rotate(object,yaw,pitch,roll); -
/*
* remarks:
* (1) all things are generated with their center of mass at the origin of
* coordinate system.
* (2) polygons are created in the XY plane
* (3) if numfaces = 0 is given a default internal (size dependent ?)
* valueisused
* (4) transformations are destructive, but extrude and revsurface not !
* I

The Library Space data structures contain a hierarchical description of the graphical
object classes defined in the system. Since the possible most efficient operation is of a
lesser concern here, these data structures are usually non-redundant. In contrast to the
Instance Space entities, the higher level geometric concepts are also represented here (i.e.

e

54

e

a

0

a

a

a

a

whether an object is a box or a cylinder, etc..) along with other properties (mass, etc..).
Aside from these differences, the implementational considerations regarding this com-
ponent are similar to the ones discussed at the Instance Space. Some examples of the
entities stored in the Library Space are:

/*

*/

* rlib.h
* R Library Space Datastructures

#define DEBUG

/* Geometrid datastructures */

#define TypeTag short type; char subtype[2]

/* Instances & calls */
#defineRT SYMBOL 0
#define R T - m B E R 1
#define RT-LIST 2
#define RT-MATRIX 3
#define RT-OPER 4
#define RT-ASSIGN 5
#define RT-SOLID 6
#define RT-LINK 7
#define RT-ROBOT - 8

/* Definitions */
XdefineRT DSURF 10
#define RT-DCOLOR 11
#define RT-DSHAPE 12
#define RT-DSOLID 13
#define RT-DLINK 14
#define RT-DROBOT 15
#define RT-DSCENE - 16

#define RT LFIXED 0
#define RT-LPRISM 1
#define RT-LREVOL - 2

/* Solid types - Subtype of SOLID */
#define RT PBOX 0
#define RT-PCYLINDER 1
#define RT-PCONE 2
#define RT-PTRUNCATEDCONE 3
#define RT-PSPHERE 4
#define RT-PEXTSURFACE 5
#define RT-PREVSURFACE 6

/* Link types - Subtype of LINK */

#define RT-PSOLID - 7

a
55

a

a

a

a

a

0

a

a

0

/* Operators - Subtype of OPER */
XdefineRT OPLUS 0
#define RT-OMINUS 1
#define RT-OTIMES 2
#define RT-ODIV 3
#define RT-UMINUS - 4

typedef struct - symbol {
TypeTag,
char +string,

1 symbol;

typedef struct -number {
TYPeTag,
float number;

} Number;

typedef union -value {
Symbol symbol;
Number number;

} Value;

typedef union j t em Item;

typedef union -expr Expression;

typedef struct operator {
TypeTag,
Expression +argl, 'arg2;

} Operator;

union-expr {
Symbol symbol;
Number number;
Operator op;

1;
typedef struct -asp {

TypeTag,
Symbol *k,
Expression *rhs;

1 Assign;

typedef struct list {
TypeTag,
Item +item;
struct - list*next;

} List;

typedef struct matrix {
TYpeTag,
Value +values[4][4];

} mat^
a

56

a

e

e

e

e

e

typedef struct -color {
TypeTag;
Symbol *name;
Number *red,*green,*blue;

} Color;

typedef struct -surface {
%Tag,
Symbol 'name;
Number *red, *green, *blue;

} Surface;

typedef struct -shape {
%Tag,
Symbol *name;
List 'params;
Symbol *color;
List *van;
Symbol *surface;
List 'points;

1 Shape;

typedef struct g a r t {
TypeTag;
Symbol *name;
Symbol *call,
List *values;
Symbol *color;
Matrix *matrix;

} Part;

typedef struct solid {
TypeTag,
Symbol *name;
List *params;
Symbol *color;
List "vars;
Number *&aces;
Symbol *surface;
Number *mass;
List 'parts;

} Solid;

typedef struct -link {
W T a g ;
Symbol *name;
List *params;
Symbol *color;
List *vars;
Number *nfaces;
Symbol *surface;
Number *mass;
Symbol *solid;

57

e

e

e

e

e

e

e

e

e

e

List *values;
List *matrices;

} Link;

typedef struct -robot {
TY?)eTag,
Symbol *name;
List *params;
Symbol *color;
List *van;
Number *nfaces;
Symbol *surface;
Number 'mass;
List *links,

} Robot;

union -item {
Symbol symbol;
Number number;
List list;
Matrix ma&
Value value;
Assign assign;
Part part;
Link link;
Robot robot;

1;
typedef struct -scene {

TYPeTag;
Symbol *name;
List *params;
List *robots;
List *solids,

} Scene;

typedef union -object {
Symbol S p l b O l ;
Number number;
Value value;
List list;
Assign assign;
Operator operator;
Matrix matrix;
Color color;
Surface surface;
Shape shape;
Part pm;
Solid solid;
Link link,
Robot robot;
Scene scene;

} *Object;

58

e

e
~

e

0

e

e

0

e

e

e

extern Object RlMallocO;
extern void RlFreeO;
extern void InitTablesO;
extern void AddTableEntryO;
extern Object RlMallocType();
extern Object MakeNumberO;
extern Object MakeSymbol();
extern Object MakeColorDef();
extern Object MakeSurfDef();
extern List 'MakeListItemO;
extern Object MakeOperatorO;
extern Object Makehip() ;
extern Object MakeShapeDefO;
extern Object MakeBoxO;
extern Object MakeCylinderO;
extern Object Makecone();
extern Object MakeTruncatedO;
extern Object MakeSphereO;
extern Object MakeExtSurface();
extern Object MakeRevSurface();
extern Object MakeSolidcall();
extern Object Makepart();
extern Object MakeSolidDefO;
extern Object MakeLmkDefO;
extern Object MakeMatrixO;
extern Object MakeLinkCall();
extern Object MakeRobotDefO;
extern Object MakeRobotCall();
extern Object MakeSceneDefO;

The Structure Editor is based on the interactive menu-based graphical editor
developed for the ROBOSIM package. We plan to reuse most of the code developed
during that work, but modified in order to operate on the data structures of the two shared
data bases. An additional feature is that we want to preserve upward compatibility with the
ROBOSIM language, so the editor will have a ROBOSIM source code interface. (But
internally of course it uses different data structures). The Editor is currently under develop-
ment.

The Display Control module provides services used to control the graphical output of
the system. (Viewing transformations, lighting, etc..). Parts of it are based on the already
existing extended ROBOSIM code. The Display Module operates upon receiving messages
from the Simulation Module regarding the changes in the working environment (i.e. which
objects have been moved, etc..). It recalculates those of its internal descriptor structures
(which are grahics hardware dependent - but all of these dependencies are localized within
this module) which have been affected by the changes, and refreshes the screen.

e

59

0

The development of the Simulation Library is a parallel effort here and in the old
ROBOSIM environment, since many of the algorithms in it (collision detection, kinematics,
etc..) are very complex, and even in the old version most of them are not operating on the
original ROBOSIM data structures. For this reason we expect to use them in both versions
with minor changes.

The other components are still in the specification phase, so a more detailed descrip-
tion is not possible at this time.

3.4. Automation Interface for Structu ral Modeling Svste rns

Previously we summarized the features we think are expected from a graphics struc-
tural modeling system to utilize the power of knowledge-based techniques in three dimen-
sional world modeling. The last part of this chapter describes some of these knowledge-
based techniques themselves. The Department of Electrical Engineering at Vanderbilt
University has a long history of building large knowledge-based engineering applications in
the fields of instrumentation, process control, simulation and testing. In the course of this
work we have developed numerous knowledge-based tools for this specific purpose.

The design of large-scale engineering systems that must operate in unstable, changing
situations is one of the foremost challenges of the information sciences. Conventional
design methodologies are based on the availability of a priori information about the en-
vironment and the system to be observed and controlled. The information is expressed in
the form of models representing relevant aspects of the environment. The basic modeling
principles of the system sciences such as separation, selection, and model economy [l] are
the key approaches for managing complexity. The essence of these principles is
simpZijication until a model of manageable size is obtained. By imposing constraints on the
possible behavior of the environment, the analysis and/or synthesis of the corresponding
automation system becomes feasible.

There are two main ways how knowledge-based techniques can be used to satisfy the
above goals. In many cases the more traditional rule-based, shallow modeling techniques
can provide quite satisfactory results. The other approach is to use as much structural
information about the environment as possible, in order to create a struchtrul, deep model
of the system. Both approaches have advantages over each other, so the best strategy is to
use them together to solve complex engineering problems.

60

0

e

e

0

e

0

The graphics modeling toolkit described previously is intended to be used together
with knowledge-based controllers using either one or both of these techniques. We plan to
use the NASA-developed CLIPS expert system shell as the vehicle to build the rule-based
parts of the intelligent controllers. This choice was influenced by factors such as the easy
availability of the CLIPS system, its good performance (due to the fact that it has been
implemented entirely in C), and the easy portability of it. For the intelligent controllers
using structural, deep modeling techniques, we plan to use the MULTIGRAPH program-
ming environment (developed at Vanderbilt) described later in this section.

We think that the two knowledge-based techniques can 'peacefully coexist' in com-
plex systems using geometric, structural modeling. For example, in one of the intended
application areas, in Space Station automation, a typical scenario for the joint usage of the
different techniques might be the following:

1. Application areas for geometric modeling techniques (ROBOSIM or the new
package) :

- The geometric model of the Station itself

- Models of different manipulators operating on the outside or in the inside of
the Station

- Other moveable attachments to the Station, like solar panels, hatches, etc..

2. Application areas for rule-based techniques (CLIPS):

- Scheduling of different operations on the Station

- Task Planning for robotics applications on the Station

- Creating qualitative models of those subsystems which can not modeled
analytically due to their complexity or lack of information

3. Application areas for structural modeling techniques (MULTIGWH):
0

- Modeling those subsystems where the structural and operational data is
available to create qualitative, structural models

e

61

a

0

a

a

e

- Modeling control systems

- Fault propagation modeling and failure analysis

Of the above three techniques, the geometrical structural modeling toolkit has al-
ready been described in this report, and the rule-based techniques are supposed to be well-
known, since they have been in use for quite a long time. But we think, that the structural
knowledge-based modeling methodology and its run-time environment (the MULTI-
GRAPH architecture, which has been developed at Vanderbilt), deserves some more
explanation.

ModeZ-based knowledge-based methodologies have great potential in implementing
automation systems for a wide range of applications. The main idea is quite straightforward
and includes the following steps.

- A dynamic model of the environment (the system to be observed or controlled) is
included in the higher-level knowledge-based controller of the automation system.

- The model is continuously updated based on observations.

- The control system is modified (structure and parameters) if state changes in the
model require it.

We will focus on the computational problems of creating structurally adaptive control-
lers by using model-based techniques. The purpose of the discussion is to show the key
components of a programming and execution environment that can be used for implement-
ing this new system category.

The main computational requirements in the implementation of structurally adaptive
controllers are the followings:

- The dynamic model of the environment and its interactions with the structure of the
control system must be represented.

- The representation must be used as part of the control process, i.e. changes in the
environment model must be mapped into changes in the structure of selected
automation system components.

62

e

- The structural changes must be executed without suspending the system operation.

a

0

0

0

*

e

0

a

By using artificial intelligence terminology, the first requirement creates a knowledge
representation problem. Naturally, the model-based approach demands the explicit repre-
sentation of automation system models. The key issue is what kind of representation
techniques can be used for this purpose? The second requirement addresses the problem of
knowledge utilkation. The knowledge which represents the interactions between the environ-
ment and the structure of the control system has to be actively used for modifying the
system operation. The problem is how to "convert" this knowledge dynamically into im-
plementation specific terms? The third requirement is closely related to the computational
model used in the execution environment of the control system. The question is what kind
of computational model can support the dynamic reconfiguration of a processing system in
execution time?

The main difficulty in the technology of intelligent adaptive automation systems is
that realistic implementation can not be built without finding satisfactory solution for each
of these problems. In the followings we will focus on the description of the components of
the Multigraph Architecture which has been designed to serve as a generic programming
and execution environment for this system category.

The Multigraph Architecture (MA) has been developed for building a broad category
of intelligent systems operating in real-time environment. The MA has been used as a
framework for intelligent instrumentation, automatic test configuration, and process
control systems. The basic layers of the MA are the: (1) hardware layer, (2) system layer, (3)
module layer, and (4) knowledge layer. In Figure 2, the three main levels of the MA are
shown from the user's point of view.

- Model Designer. The design and implementation of model-based, intelligent control
systems requires extensive modeling. Because the unforeseen operational conditions
might require structural modifications in the control system, the models must be
hybrid. Hybrid models explicitly represent not only quantitative, but qualitative,
structural attributes of the environment and the control system. Model designers
must be supported by appropriate tools to build and validate these models.

- Application Programmer. The models that are used in the design and implementa-
tion of intelligent automation system are domain specific by their very nature. The
form of the models (concepts, relationships) are different in chemical processes,
mechanical processes, information processing systems etc., because the models must

e

63

0

0

e

e

a

e

0

e

I
I

MODEL DESIGNER
LIBRARY

- - - - - T E S T DECLARATIVE LNG.
GRAPHIC EDITOR

D LL I AND

P G E

VALIDATION
TOOLS

I N T E R P R E T E R S
I I I

APPLICATION
PROGRAMMER

PROG.
TOOLS

MULTIGRAPH KERNEL

S Y S T E M
PROGRAMMER HARDWARE 8c OS.

Figure 2. Structure of the Multigraph Architecture

reflect the selected properties of these systems. However, some of the basic model-
ing principles, such as composition techniques, organization in levels of abstraction,
multiple-aspect representation, etc. are quite universal. This generality makes it
possible that the creation of domain specific modeling tools can be supported by
general methodologies. The application programmer level in MA includes those
components that are used for building various, domain specific modeling environ-
ments.

- System Programmer. The lowest level of MA provides interfaces to the components
of the Multigraph Execution Environment (MEE). The central element of MEE is
the Multigraph Kernel (MK), which is the run-time support of the Multigraph

e

64

0

e

e

a

e

e

e

e

Computational Model (MCM). MCM is a macro-dataflow model which satisfies the
required dynamic behavior mentioned before.

The models that are created during the modeling process are complex structures
representing different aspects of the environment, the control system and their interactions.
It is important to note that in these models the structural complexity is the dominant factor,
the algorithmic complexity is typically negligible. This fact had deep influence on the
properties of the Multigraph Programming Environment (MPE). The two basic techniques
used for supporting this activity are (1) multiple-aspect model building and (2) declara-
tive/graphic programming.

- Multiple-aspect model building. Characterization of objects from different aspects is
a well known method in modeling. There are artificial intelligence (AI) tools that
directly support the creation of "multiple views". According to our experiences, the
real difficulty is not the representation of different aspects but the expression of the
interactions among them. The critical question is how to facilitate the well struc-
tured representation of these interactions? MPE allows the declaration of
structurally independent (SI) and structurally dependent (SD) modeling aspects.

- Declarative/graphic model building tools. Modeling requires tools for representing
the models. The representation technique has to satisfy two contradictory require-
ments. First, the representation system must provide "interface" for the model
designer, i.e. the represented model has to be easily comprehensible by humans.
Second, the represented model has to be machine readable, because the models
constitute the "knowledge-base" which determines the system operation. Based on
these requirements and on the fact that the models express dominantly structural
information, MPE supports two equivalent representation form: declarative
languages and the corresponding graphic representation. The model building process,
which is performed by the model designers is fully graphical and directly supports
SD and SI modeling.

Pictures 6 and 7 show the graphic model a reconfigurable controller for a
simple robot arm. The arm is controlled by (a) a proportional controller, or (b) a
PID controller. The reconfiguration occurs when the "Checker" finds the perfor-
mance of one of the controller unacceptable. The figure shows only the top level
structure of the controllers and the simulation model of the arm. Each of the boxes
have an internal structure on the lower levels of the hierarchy. The graphic model
has been built by using the iconic editor of MPE. The pictures also show parts of the

e

65

e

equivalent declarative language representations of the model. The declarative
language is a variation of the "frame languages", which can be easily defined for the
different modeling domains.

- Test and Vidation Tools. Declarative languages offer excellent opportunity for
automatic test and validation. The basic approach used in the test and validation
toolset of MPE includes the following steps:

1. the declarative language forms are mapped into a unified graph structure,

2. test and validation criteria are defined for the different modeling aspects,

3. the criteria are expressed as graph properties, and

4. graph algorithms are used to check the properties.

e

e

The methodology supports the automatic consistency testing of the individual
modeling aspects and the consistency testing among the SD aspects. A serious
limitation of the test approach is that only static properties of the models can be
tested this way. In a new research direction we address the problem of testing the
dynamic, run-time behavior of the system.

An important goal of MPE is to facilitate the definition of declarative languages and
the corresponding graphic editors for new application domains. Generic tools belonging to
the level of the Application Programmer support this task which includes the following
steps: (1) definition of the syntax of the declarative languages, and (2) configuration of the
corresponding graphic editor. The two programming tools developed for this purpose are
the Declarative Language Language (DLL), and the Programmable Graphic Editor
(PGE), respectively.

Multiple-aspect models of the external environment (platforms, signal sources, etc.),
the various components of the control system (monitoring systems, controllers, etc.), and
their interrelationships embody the information that is necessary to generate a specific
instance of the knowledge-based controller for the automation system. The problem of
system integration is to generate this instance from the models, or in other words, to map
the models into an appropriate executable program. Because of the implementation
method of this mapping, we will call this process model interpretation.

66

e

ORIGINAL PAGE
COLOR PHOTOGRAPH

Pictures 6a-b: Graphic model of the Reconfigurable Controller with Declarative
Language Representation

Pictures 7a-b: Graphic model and Declarative Language Representation of a
cascade controller

ORIGINAL PAGE
COLOR PHOTOGRAPH

e

'e

e

e

e

e

e

e

e

The complexity of the model interpretation process largely depends on the nature of
the models. If it includes only the symbolic, static model of a specific system, e.g. the model
of a controller, the model interpretation process is reduced to the complexity of simple
application generator systems. In the general case, the structurally adaptive controllers
require the following capabilities from the model interpretation process.

- MuZtipZe-aspect interpretation. The result of the model interpretation process must
generate more than one subsystems. Multiple-aspect model interpretation means
that the mapping process must interpret the models from the aspects of the various
subsystems to be generated.

- Decision making. The complexity of the mapping process is largely the consequence
of the fact that the models are not structured according to the subsystems of the
system to be generated. (Except the simple application generator problems, where
modeling is usually constrained to specific computation systems to be generated.)
Indeed, in model building time the natural way of thinking is to focus on selected
aspects of the environment, the control system and their interactions without any
explicit considerations to the actual way of implementation. The model interpreta-
tion process has to be "smart enough" (1) to collect the relevant information from
the models for the various subsystems, and (2) during this process to make decisions
on the actual structure of the computation system by analyzing the interaction of the
different modeling aspects.

- Dynamic behavior. The essence of any structurally adaptive system is the capability
for dynamic reconfiguration of subsystems after a change in the working environ-
ment has been detected. It means that the model interpretation process has to be
restartable from that point which has been effected by the detected change.

These capabilities required the elaboration of a special computation model in the
Multigraph Execution Environment (MEE). MEE provides a system integration tool by
supporting the dynamic configuration of application programs from a library of precom-
piled elementary processing modules. This configuration process can be performed by the
higher-level knowledge-based system components using an appropriate builder interface of
the MEE. Frequently the usage of the MEE also enables the utilization of the inherent
structural parallelism in the application programs, since it is quite typical that many of the
processing modules of an application configured using the above method can be executed
concurrently, provided that the underlying hardware architecture supports this.

e

69

e

a

MEE uses a macro-dataflow model as its basic computational model. The reasons for
this choice were (1) the well-known nature of the dataflow computations due to the sig-
nificant amount of research conducted on exploring the theoretical properties and im-
plementational issues of these, and (2) the fact that many engineering system models (for
example the signal flow graphs used in signal processing and process control systems) can
easily be mapped into dataflow graphs. Some extensions were added to the "typical"
dataflow computational concepts, because the MEE serves as a unified run-time support
for the different parts of the intelligent automation systems, and these parts might use
different models of computation (for example signal-flow graphs, discrete event simulators,
rule interpreters, constraint propagation networks, etc..).

The applications in the MEE are mapped into a controlgraph. A control graph in the
MEE is defined by its actornodes, datanodes and connection specifleatiom. The actornodes
are the active components of the graphs. They execute an application module (the script)
which can be written either in Lisp or in other non-symbolic languages (C, Fortran, Pascal).
The scripts are position independent, they communicate with the other graph components
using the communication primitives of the MEE and the ports attached to the actor node.
If the code of the script is reentrant, it can be attached to several actornodes. The MEE
provides a way to pass a local parameter structure to the scripts, which is called the context
of the actornode. Beside the typical dataflow control principle (a node can be fired when-
ever all of its inputs are present - faZZ mode) MEE also supports another mode of actor-
node execution, where a single input data is enough to fire a node (ifany triggering mode).

The datanodes are the passive components of the control graphs. Their function is to
store the data generated by the actornodes. They can store either a stream of data, or only
the last data sent to them.

MEE supports several operation modes of a control graph. A graph can be operated
either in data-driven or demand-driven mode, or in a combination of the two modes. In the
data-driven mode, the data sent to a datanode propagates a control token to the following
actornodes, which will fire after collecting the necessary tokens. The demand-driven mode
means that an attempted read operation on an empty datanode will send a request token to
all possible sources (ie. the connected actornodes) of the information.

MEE provides an environment and task structure which is used to assign the various
system resources of the system hardware and software (processors, tasks, special hardware
units, etc..) to the execution of the actornodes in the computational graphs.

70

0

e

~

le

e

e

0

e

a

e

e

The structure of a typical implementation of the MEE can be seen in Figure 3. MEE
can be depicted as a set of protected data structures which can be accessed through the
following three interfaces:

Module
Library

1 KB Components 1

V
Builder/Control In te r face 1

e . El Shared Control Graph
= I I 1 1 1 System In ter face I

I I I

A
/I
V

I 1 Operating System I
I

Figure 3. Structure of the MEE

- Module Interface: which provides the data and request propagation calls for the
application modules attached to the actornodes.

- System Interface: which is responsible for scheduling the elementary computations
using the system resources provided by the host operating system.

- Builder Md Control Interface: which provides the control graph building and execu-
tion control facilities for the higher-level knowledge-based system components. The
services of this interface can operate on an already active computational graph,
which enables the dynamic reconfiguration of the application programs.

71

a

a

a

MEE offers a set of debugging tools which are especially helpful in concurrent sys-
tems. These include a stepper/tracer facility and a graphic monitor, which generates and
displays the graphic layout of selected parts of the control graph, and dynamically displays
the status of the nodes in the graphic window.

The computational model and the details of its implementation were selected such
that the Kernel can provide the same execution environment on a variety of computer
architectures, by hiding the details of the (possibly parallel) execution from the application
modules, which can be simple sequential procedures in every case.

a

e

e

a

e

e

e

72

e

e

e

4. CASE STUDIES

a

0

a

0

a

a

The modeling methodologies and tools described in the previous chapters provide a
usable working environment for testing automation concepts regarding space applications.
This chapter describes some of this (planned and already completed) work. First a struc-
tural, geometric model of the Space Station is presented, which was prepared using the
graphical modeling techniques of Chapter 2. Next some planned modeling efforts are
described which combine this structural model with knowledge-based techniques to simu-
late various operational aspects of the Station. Part of this work is the modeling of the
Space Station Environment Control and Life Support System (ECLSS), which has already
been performed using the symbolic modeling techniques introduced in the previous chap-
ter.

4.1 Space Stat ion Mode linP Using ROBOSIM

In the last three years, ROBOSIM has been applied in numerous occasions to
develop and study real-time models of industrial manipulators. It’s use, however, was not
limited to robotics only. Recently, ROBOSIM was put to use to support a sequenced build-
up of the space station model. The porting of ROBOSIM to a real-time graphics worksta-
tion, the HP 350SRX, with it’s 3D graphics capabilities, knobs and menus served as a more
interactive and user-friendly tool which allowed for superior illustration and detailed
examination of different parts of the space station model.

In designing the space station, just like in designing a robot, the selection of the
robot’s kinematic design is usually considered first. The number of robot joints, type of
joints(rotationa1, sliding or fxed) and the physical configuration are all important factors of
the robot’s kinematic design.

After careful analysis of NASA’s latest configuration of the space station model (SS,
for short) and knowing ROBOSIMs capability of handling multiple number of

73

a

e

e

a

e

e

e

e

manipulators within the same working plane, a modular approach was chosen to construct
the SS model.

The SS model was broken in to several independent, serially linked manipulator
models, all assigned the same reference frame. Each manipulator consisted of separate
parts, where each part was built as a compound object made of primitives, such as
boxes,spheres, cylinders and user-defined shapes. These parts were then assigned the
correct kinematic parameters and mass properties and finally assembeled together using
ROBOSIM.

The modular approach was a necessary approach as well as a practical one. It was
necessary, because it helped overcome the problem of serial-linkage, usually associated
with robotic simulation packages, where a movement in one link will cause a movement in
the next.

Breaking down the model into separate independent manipulators, helped overcome
this obstacle. For example, each set of the solar panel assemblies could now be adjusted
and controlled independently of the other set. The modular approach is also practical
because it allowed for complicated models to be created in smaller parts and assembled as
the designer required. Changes could then be made to any component of the model
without affecting other parts. New parts or manipulators could also be added just as easy
without affecting any of the existing models.

The SS model was broken into five independent, serially linked manipulators, with
each manipulator representing a desired set of rotations and/or translations. These models
were represented as follows:

1. Two solarpanel structures (Pictures 8 and 9), each of which is treated as a separate
manipulator attached to the side of the main truss assembly. Since both solar panel
structures were physically identical, only one structure had to be constructed. The
other was simply replicated, but assigned different kinematic properties. This
feature of ROBOSIM helped save time and effort, since structures can be saved in a
file for later usage.

2. Two identical sets of solar panels, heat radiator and truss assemblies, each treated as
an independent manipulator. These assemblies attach to both ends of the middle
truss assembly. Each assembly has two rotational movements. One for the solar
panels, to position them in a direction facing the sun, the other for the whole as-

74

e

a

sembly structure to be able to position the heat radiators away from the sun.

a 3. Mobile servicing robot, with five rotational joints, sliding on a set of rails to be at-
tached to middle truss assembly (Picture 10). The robot was modeled as a six degree
of freedom manipulator, with the sliding rails serving as a translational joint. The
robot is used to perform routine tasks, e.g., inspection and maintenance.

0
4. Finally, the middle truss msembb was built. It included crew living modules, antennas

and truss assemblies all attached together to create the main body, to which all
other sub-models attach (Picture 11). A common frame, to which all other
manipulator models refer, was assigned at the middle of this truss assembly.

a

0

e

0

0

5. For easier debugging, this final structure was broken into three parts: Crew-living
modules, antennas and trusses. A set of two non-shaded, user-defined cubes were
built and propagated, using temporary storage registers, to construct the truss
assembly. This illustrates ROBOSIMs ability to create user-defined shaded and
non-shaded objects as parts of the same model.

With the links of all five models being defined and a common reference frame as-
signed, the graphics display program was used to assemble the different parts, in a pre-
assigned configuration, to generate the desired SS model (Picture 12) The menu box, top
right of the screen, provides various options with which the user can interactively view and
control separate parts of the model.

Separate routines could also be linked to the Graphics display program to assign joint
limitations and/or set motion along any parametrically defined functions. Two sets of
predefined motion for the main solar panel assemblies is shown in Picture 13.

4.2 ODerational Modeliw of the Space Station

Space Station automation requires the analysis of the complex material, energy and
information transfer processes from many different aspects. The structural model intro-
duced previously is just a representation of one of these aspects, but to cover the full range
of possible operations, it has to be combined with other models representing the different
aspects and using different modeling techniques. The integrated modeling environment
which was the subjects of the previous parts of this report offers a unique opportunity to do

75

e

e

e

e

Picture 8: Secondary solar panel structure

e

ORIGINAL PAGE
COLOR PHOTOGRAPH

Picture 9: Main solar panel assembly with radiators

e

this. Below we list a couple of the problems which are well suited for this approach.

0

e

e

a

e

e

e

e

Attitude Control System and its Dependencies: The Space Station is a large structure,
which due to the different disturbing effects (solar wind, etc..) requires a constant control
of its attitude. This is done by a triple gimbaled gyrator system (according to the plans).
The structural model of the station together with the (already existing and newly
developed) elements of the Simulation Library could provide a toolkit to test the orbital
mechanics and the attitude control problems related to the station.

But this is just one of the aspects of the attitude control problem! The Space Station
is a relatively small closed system, so everything influences everything. Normally the triple
gimbaled gyroscopic attitude control system is sufficient to control the orientation of the
Station. But during the course of the operation, the rotational angles of gyroscopic wheels
might reach a position where they align with each other - which means that the system is
not capable of control any more. In such cases the gyroscopes must be 'recharged' Le. their
angles of rotation made (approximately) perpendicular again. This of course will offset the
orientation of the Station which then must be corrected using thrusters. It is expected that
this operation will have to be performed at about every tenth orbit. There are several
constraints which influence this:

1. This 'recharging' operation might disturb some ongoing low-gravity experiments
(because it introduces relatively high accelerations), so these have to be considered
when scheduling it.

2. There are other orbital maneuvers which affect the attitude control (docking or
launch of objects). A higher-level controller which schedules the recharging ac-
tivities of the attitude control system must know about these events too.

3. While the Station is on the 'SUMY' side of the Earth, the photelectric cells should be
operating at the possible highest capacity. If the sudden changes in the station's
orientation can not be followed by the control system of the panels then the energy
production might suffer. On the other hand the operation of the solar panel's
alignment mechanism itself influences the attitude control system.

The Electrical Energy Production and Dbtribution System itself is an interesting area of
study, due to the limited energy supply and the interactions between the different con-
sumers. Some of the problems in this area are:

e

78

e

OR I G 1 I G L ~ A E ~
COLOR PHOTOGRAPH

Picture 10: Mobile servicing robot with sliding rails

ORIGINAL PAGE
COLOR PHOTOGRAPH

Picture 11: Middle truss assembly with antennas and crew modules

e

e

a

e

a

e

a

a

0

e

Pictures 12a-b: Full and close-up views of the complete Space Station model

ORIGINAL PAGE
COLOR PHGTOGRAPH

ORiGiNAU PAGE
COLOR PliOTOGRAPH

a

Pictures 13a-b: Views illustrating different rotations of main solar panel assemblies

a

e

0

0

0

0

0

0

1. A control system must be developed which utilizes the periods while the Sun is
visible most efficiently by aligning the solar panels as close to perpendicular to the
Sun as possible. We have already begun developing a model for such a control
system for this purpose utilizing the structural model of the Station and some of the
higher-level symbolic tools introduced previously.

2. A higher-level controller of this subsystem must predict the future energy produc-
tion (interactions with attitude control and other orbital operations!), and based on
the reserve energy and projected production must schedule the operation of the
different consunmers. This seems to be a task to be solved using knowledge-based
techniques, possibly by using the modeling techniques of Chapter 3 to simulate the
different consumers.

3. There are vital subsystems on the Station whose energy demands must be satisfied.
An example of these is the Environment Control and Life Support System (ECLSS).
Beside being a very important energy consumer, ECLSS is also a big energy con-
sumer. If it is predicted that ECLSS’s energy demands can not be met, the whole
operation of the Station may have to be rescheduled. Actually ECLSS itself is a set
of interrelated subprocesses, some of which are not as important as the others. For
example in the case of an energy shortage the air control subsystems for the experi-
ment modules might operate at a reduced capacity, while it is not true for the crew
modules. Such a decision will result in having to stop some of the ongoing experi-
ments. But this again is just one of the possible interrelations!

A common characteristics of the above examples is that modeling them requires
considering many aspects of their operation. Some of these aspects can be expressed in
quantitative terms, while others only in qualitative ones. This fact is the best justification
for an integrated automation simulation and modeling testbed, containing (1) geometric,
graphical modeling tools for spatial modeling of the different systems of the Station (e.g.
ROBOSIM), (2) a rule-based programming environment for creating expert controllers
and qualitative, knowledge-based models (e.g. CLIPS), and (3) tools for creating deep,
structural, knowledge-based models for adaptive control and failure analysis (e.g. MULTI-
GRAPH).

83

4.3 Studv o f the Space Station ECLsS

e

e

e

One of the most important systems of the Space Station is the Environment Control
and Life Support System (ECLSS). This is a vastly complicated system with many interact-
ing subsystems. Design of low-level control systems for these subsystems is based on model-
ing the process dynamics. Development of the diagnostic system requires the elaboration of
sophisticated fault models, and the construction of the operator interface is closely related
to various qualitative models of the subsystems. The analysts can develop these models of
different levels of abstractions, and can apply them for a particular purpose. But how can
we secure the consistency of the models if they are developed separately? How can we
ensure that a subsystem to be designed will be synergic with the related process models?
How can we validate the models?

Due to the difficulty of these problems, the support of modeling is of paramount
importance in a simulation testbed for automation. The purpose of this case study is to
demonstrate the use of a multiple-aspect modeling technique in analyzing the diag-
nosability of the ECLSS. The study is being conducted in close cooperation with the Boeing
Aerospace Company, Huntsville, Al. Since the task has not been completed yet, we
describe only partial results of the ongoing modeling effort.

e
Objectives of the ECLSS stu dv

e

e

ECLSS is a large system comprising complex material, energy and information
transfer processes. The primary tool for the design and operation of the system is extensive
modeling. The models help to understand the ECLSS in the design phase, and they are the
key components of the monitoring, diagnostics and control system in operation time.

From a methodological point of view, we consider the ECLSS design process as an
incremental model building activity, in which various system components are defined in
terms of specific models. The design is successful if the individual models are correct, and if
the various models are consistent with each other. If the progress in the design process is
represented in the form of a set of formal models (quantitative and qualitative), the inter-
mediate results can be tested and validated by using the following techniques:

1. The consistency of the models of different levels of abstraction can be tested by
using mapping rules among the modeling aspects.

e

84

e

e

l

e

e

e

a

e

a

e

2. The models can be used for the generation of quantitative/qualitative simulations of
the system, in order to test its expected behavior from a selected aspect.

3. The performance of specific subsystem (e.g. diagnostics, or control) can be tested in
a simulated environment.

AI provides a rich selection of modeling techniques that can support this process.
Knowledge representation techniques can be developed to describe qualitative and quan-
titative features of system. These representations can be used to test the correctness of the
individual models, to check the consistency among the related modeling aspects, and to
analyse different features of the system designed.

The objective of the study was to test the diagnosability of the ECLSS and provide
advice on optimum sensor allocation. The specific objectives are the following:

1. Multiple-aspect modeling of ECLSS. The models will define the energy, material
and information processes in the system in a hierarchically organized way. These
models include the Hierarchical Process Models (HPM) which serve as the dominant
modeling aspect for the study. HPM provides the context for other, dependent model-
ing aspects. The structure of the physical processes in ECLSS are modeled by using
the graphic/declarative modeling techniques of MPE.

2. Hierarchical Fault Models (HFM) of ECLSS. The fault models specify fauZt modes
and fwZt propagation paths. The structure of the fault models corresponds to the
structure of the process models, since faults can propagate only through physical
interactions that are expressed in the process models. The multiple aspect modeling
methodology of MPE ensures the consistency between the process models and the
fault models.

3. The issue of diagnosability can not be separated from the diagnostic method to be
used. A sophisticated, model-based diagnostic system which can localize fault
sources by analyzing detected alarms will be applied for the analysis. This diagnostic
method can reveal how the sensor placement influences the diagnosability of the
ECLSS.

Although, the study is limited to the issues of diagnosability, we can easily expand the
system later with other modeling aspects, such as modeling the monitoring system, operator
interface, control system, etc. By using the automatic program generator services of MPE,

e

85

e

e

the models can be used for generating an executable version of these sub-systems.

e

0

Model-based d ia g nostic svstem

The problem of diagnosability can not be separated from the diagnostic technique to
be used during system operation. In the ECLSS study we have used a sophisticated model-
based diagnostic system, which applies a hierarchically organized fault propagation model.
In this section we summarize the properties of the diagnostic system and discuss the
specification of the fault model.

A real-time fault detection and diagnosis capability is absolutely crucial in large-scale
space systems. Some of the existing AI-based fault diagnostic techniques like expert systems
and qualitative modeling are frequently ill-suited for this purpose. Expert systems are often
inadequately structured, difficult to validate and suffer from knowledge acquisition bot-
tlenecks. Qualitative modeling techniques often generate a large number of failure source
alternatives, thus hampering the speed of the diagnosis.

In this study we use a graph-based technique which is well suited for real-time fault
diagnosis. A Hierarchical Fault Model of the system to be diagnosed is developed. At each
level of hierarchy, there exist fault propagation digraphs denoting causal relations between
failure-modes of subsystems. The edges of such a digraph are weighted with fault propaga-
tion probabilities and fault propagation time intervals. Efficient and restartable graph
algorithms are used for on-line, fast identification of failure source components.

Reauirements for the diamostic svste m

A real-time fault diagnostics system has to function in an environment where new
alarms may constantly be generated, due to the propagation of failures. To cope with such
a time-changing scenario the diagnostics system must have the following characteristics:

1. Signal Processing, Alarm Generation and Failure Source Identification software
must be as fast as possible. The first two are usually standard well-defined and
analyzed algorithms, and hence, virtually all speed improvements have to be
achieved in the failure source identification phase.

2. The diagnosed results must be updated as time elapses and new alarm information
is received. These results must be accurate but need not have a fine resolution. This
implies that in the early stages of diagnosis a large component such as the Potable

86

a

e

e

0

e

e

Water Assembly can be identified as the fault source. The resolution of this fault
source is further refined with the passage of time and additional alarm information
to a unique component inside the Potable Water Assembly.

3. The User-Interface must present the current status of diagnosis in a comprehendible
manner, reflecting the level and the granularity of the system under diagnosis, at
which the diagnostics system is operating.

GraDh-based app roach in fault diunostics

The basic philosophy of the graph-based approach is based upon multiple-aspect
modeling. The system under consideration is hierarchically decomposed from many aspects
in order to yield a set of different models. The functional decomposition leads to the Hierar-
chical Process Model (HPM) and a structural decomposition leads to a Hierarchical
Physical Component Model (HPCM). A Hierarchical Fault Model (HFM) is developed in
the context of HPM with links to the HPCM.

The technique of hierarchical decomposition is widely used during model building for
the following reasons:

1. Design., knowledge acquisition, and knowledge-base maintenance of large complex
systems becomes structured and easier.

2. Running the same graph algorithms on smaller number of nodes many times takes
lesser time than running them on the entire set of nodes in a system. For example it
takes a longer time to run an O(n) algorithm on a graph with 200,000 nodes than it
takes to run the same algorithm 200 times on a graph with 100 nodes.

3. It is possible to conduct the search for the failure source on the HFM in a parallel
manner, thus enabling speedy diagnosis.

4. In most cases a large granularity component assembly can be identified as a failure
source at an early stage, and then the search needs to proceed only in that com-
ponent’s part of the model.

Hierarchical Process Model (HPM) and Hierarchical Fau It Model (HFM)

A process in the HPM can be thought of as a functional unit carrying out a specific

87

0

0

a

e

0

e

function in the system, by utilizing different physical components. Different processes on
the same level may interact with each other through shared physical components. Processes
in the HPM can be associated with many different components in the HPCM as shown in
Figure 4. In the context of each process the following are acquired:

PHYSICAL COMPONENT

PROCESS HIERARCHY *

P11

P l

Figure 4. A Hierarchical Process Model

1. Process Failure-Modes.

2. Process Alarms and alarm-generators. The alarm-generators accept sensor inputs
and if needed, generate the appropriate alarm.

88

e

3. Alarm Failure-Mode associations.

a

0

e

e

e

e

4. Failure-Mode Physical Component associations.

Each process in the the HPM has its fault model, therefore fault models are con-
sidered to be dependent aspects to the process models. This model is determined by the
failure-modes of the process, and if present, the failure-modes of its subprocesses. All these
failure-modes form nodes of a fault propagation digraph, with directed edges between
individual failure-modes signifying a fault propagation possibility. Each edge in this graph
is weighted with two parameters a fault propagation probability and a fault propagation
time interval in terms of a minimum and a maximum. The fault propagation digraph of a
process on level i is shown in Figure 5. The collection of all such fault propagation digraphs
and failure-mode physical components associations results in the HFM. It is possible to
extract the basic structure of the fault propagation digraph from the process models, since
most faults can only propagate along physical connections.

Diamostic Alvorithm

By analyzing the fault propagation digraph together with detected alarms, the pos-
sible failure sources can be found. This process can be migrated to lower levels of process
hierarchy in order to get a better resolution. The failure source identification process
consists of two algorithms: the Failure Source Process Identification (FSPI) and the Fault
Source Component Identification (FSCI). An Inter Level Migration (ILM) process per-
forms the task of searching the process hierarchy for the best resolution of the possible
faulty source component.

The FSPI algorithm obtains as input the fault-propagation digraph of a process to be
diagnosed. It also receives all alarms currently ringing within that process and its sub-
processes. This algorithm is accurately capable of detecting under most circumstances, the
occurrence of either a single or a multiple fault in the process. On completion, this algo-
rithm returns the possible fault source subprocesses and their fault source failure-modes. It
uses the following constraints to determine the fault source in case of a single fault condi-
tion :

1. Reachability Constraint : All ringing alarms shall be reachable from the detected
source failure-modes.

2. Monitor Constraint : No failure-mode with a normal alarm shall lie on a path from

89

Process Structure On Level i :

le

Fault Model On Level i :

L J L l

Figure 5. Fault Propagation Digraph of a Process

any of the detected source failure-modes to any of the failure-modes with a ringing
alarm.

3. Temporal Constraint : All ringing alarms shall be individually reachable from the
detected individual source failure-modes within the time interval computed from
the time intervals found on shortest path between each individual alarm and source
failure-mode pair.

4. Consistency Constraint : There shall be no failure-mode with a ringing alarm whose
reachability time from a source failure-mode is greater than the maximum

90

reachability time of a failure-mode with a normal alarm from that detected source
failure-mode.

The algorithm is closed and complete and is thus suitable for fast location of failure
source processes.

The FSCI algorithm takes as input a list of detected source failure processes and their
source failure-modes. In case of a single fault condition it returns a union of all physical
components associated with the source failure-modes. In case of a multiple fault condition
it tries to find a common component amongst all the source failure-modes. If successfull it
returns that common component, and if not it returns a union of all associated components.

The ILM process detects the highest level of the process in which alarms are ringing.
It then tries to search for a failure source by running the FSPI and later the FSCI algo-
rithms on all processes in that level. The results are used to guide a breadth-first search of
all processes present in the next lower level. This process continues until the lowest level of
hierarchy is reached. At this point the best possible resolution of the failure source is
achieved. If during this migration an alarm rings in a higher level than the current one
under processing, the ILM goes to that higher level and restarts the diagnosis. At any point
in time the ILM can present its best guess of the failure source in any level of process
hierarchy.

Diamostic Syste m Architecture

The Real-Time Fault Diagnostic System required:

1. the potential use of a distributed computing architecture,

2. support for a parallel programming model and

3. integration of symbolic and numerical computations.

The diagnostic system architecture is shown in Figure 6. A Monitoring sub-system
handles the job of acquiring sensor outputs and alarm-generation. The Diagnostic sub-
system consists of the diagnostic manager, diagnostic methods and a display manager. The
diagnostic manager accepts as input all generated alarms and is in charge of conducting the
inter-level search for the failure source. During this search it may send a process to the
diagnostic methods object asking it to perform either the FSPI algorithm or the FSCI

91

0

algorithm. The diagnostic methods perform the requisite algorithm and reports the result
back to the diagnostic manager. These results are used by the diagnostic manager as a
guide in its search. As soon as results are obtained for a level in the hierarchy they are sent
over to the display manager for displaying them to the user.

TASK

Alarm 1 .
. DIAG-

Alarm 2

NOSTIC
Alarm 3

ALARM

G E N E -

RATOR ,

I

Alarm 4 MANA-
G E R

Alarm n

DISP-
LAY

MANA-

Diagnostic
Methods

Decl. b n g . lntrptrs +
System Builders

L i p + MGK + C L

- USER

Figure 6. Diagnostics System Architecture

Research P lan for the ECLSS Analvsis

The analysis is being conducted in parallel with the ECLSS design activity. The
information for the ECLSS models is being acquired from BAC design engineers. The
main steps of the analysis are the following:

92

e

1. Definition and refinement of the HPM and HFM for the ECLSS.

e

0

0

e

2. Derivation of a real-time alarm pattern simulator from the HFM. The alarm pattern
simulator generates alarm sequences from the HFM by using the fault propagation
information in the models.

3. The alarm sequences are "filtered according to a given sensor allocation plan. The
filtered alarm sequence represents the primary alarms as received by the diagnostic
system.

4. Based on the primary alarm set, the diagnostic system analyzes the possible fault
sources and fault causes. The resolution of the analysis depends on the actual
composition of the primary alarm sources, Le. the on the actual sensor allocation.

5. The experimental results are evaluated and sensor allocation strategies are advised.

We are currently at the modeling and model refinement phase of the study. The
actual results of this activity are shown in the next section.

Process and Fault ModelinP for the ECLSS
0

e

e

e

The starting point for this case study was an informal description of the ECLSS in
terms of a layered process component graphic and a fault diagnosis handbook indicating
possible faults of the system or of its subcomponents. The system is currently under develop-
ment, so we are only able to show partial results. The main goal is to show a snapshot of
how the ECLSS is represented and how our technology is used to obtain meaningful1
problem representations of an overall process to be used for a variety of applications like
fault diagnosis.

Hierarchical Process Model (HPM) of the ECLSS

The first step is to obtain a decomposition of the overall system. The decomposition
does not necessarily follow the physical layout but rather the functional layout. The step-
wise refinement of the ECLSS leads into the process hierarchy tree shown in Figure 7.
Each node represents a certain function of the system. The function maps the specified
input signals to the specified output signals. Signal dependencies in the hierarchy tree are
only possible between father and son nodes or between sibling nodes. This guarantees
complete modular development and any desired design direction. Any signal dependency is

e

93

e

e

Pumping

ECLSS

Distrib. 1' Control c r d b r i n e Proc. e

e

a

Air Control

THC q\\,
CO, Ventilation

/\
CO, Removal CO, Reduction

Potable Water Hygiene

Filtration Testing Circulation Hygiene

/ I I\
Waste Water Ueern Wante Water

Collector I SUPPlY

Vapor Addition

Figure 7. Process Hierarchy of the ECLSS

indicated by a connection. Connections usually describe a material flow.

In the following, the process hierarchy is described in more detail. The top level
process is the ECLSS process as shown in Picture 14. Since this process is currently not
integrated in any other process it does not have any input and output signals. An integra-
tion of the ECLSS later into the entire Space Station process would include an extension of
the interface including e.g. electricity as a supply signal. The functional decomposition of
the ECLSS system currently consists of three subprocesses:

- Air Control

94

e

e

- Potable Water Processing

- Hygiene Processing

On this level of the decomposition only water flow is considered between the sub-
processes of the ECLSS. As Picture 14 shows the water flow itself forms a closed loop. The
air control consumes water in the form of a supply from the hygiene water for the oxygen
generation. How the water is used is hidden in the air control process itself and will be
specified on a lower level of the decomposition. A second water supply for the air control is
vapor contained in the air itself. The source of the vapor are module elements like dish
washers and showers. These modules are modeled in the hygiene processing branch and
therefore the vapor is an output of the hygiene processing. The air control itself supplies
the potable water processing with two water sources, one as an outcome of the dehumdifica-
tion and one as an outcome of the carbon dioxide processing both modeled in the air
control process. This is explained below. The potable Water processing supplies the
hygiene process with make-up water and with drinking water which will be consumed in
subprocesses of the hygiene process.

1. Air Control

The air control is a more complex process model. Its decomposition is shown
in Picture 15.a. The following subprocesses are modeling the functionality of the air
control:

e

a

e

- Temperature and Humidity Control (THC)

- Ventilation

- Oxygen Generation

- Carbon dioxide Processing

The interface signals of the air control as already used on the upper level of
the process hierarchy, are water and vapor as input signals and dehumidification
water and carbon dioxide reduction water as output signals. The air control basically
models the water flow through the air and the air flow itself. The air flow itself is a
closed loop, starting with the ventilation subprocess which pumps mixed air to the

95

e

l.

0

0

0

.
0

.
Picture 14: Top Level Process Model of ECLSS

e

0

0

a

e

a

0

temperature and humidity control. The dehumdification of the THC generates
water which is supplied through the output signal to connected processes of the air
control. Further outcomes of the THC are air which is circulated by the ventilation
system. A part of the air is used for the C02 processing and is designed as a
separate signal. The C02 processing removes the C02 from this air in order to keep
the desired C02 concentration in a certain range. The C02 reduced air is passed
back to the ventilation. Further input signals of the ventilation are oxygen and
hydrogen supplied by the oxygen processing and the vapor supplied through the
external interface of the air control. The ventilation system basically mixes all of its
input to a regular air composition. The oxygen processing generates hydrogen and
oxygen out of the external water supply using an electrolysis process. The main part
of the produced hydrogen is used by the C02 processing.

The C02 processing maps its input signals, air and hydrogen, to its output
signals water, hydrogen and carbon using two subprocesses. This is shown in Picture
15.b. The C02 removal process extracts C02 from the air and supplies the C02
reductions process. The C02 and the H2 are transformed with a Bosch process into
H20 and Carbon.

2. Potable Water Processing

The second subprocess of the ECLSS is the potable water processing. The
physical layout of this process includes two rows of each 4 tanks. At a specific time
each tank has a certain unique functionality as filling, use, test or supply. While one
of the tank rows is collecting the potable water from the air control process the
other row is processing the water. Whenever one tank is full the tanks will switch
their functionality i.e tested water can be used. Since we are more concerned about
the functional decomposition rather than the physical decomposition we obtained
the following subprocesses (shown in Picture 16).

- Pumping

- Distribution and Storage
a

- Multi Filtration

- Potable Water Testing

97 c- a
e

'

0

a

a

0

a

a

a

a

e

0

ORIGINAL PAGE
COLOR PHOTOGRAPH

Pictures 15a-b: Process Models of the Air Control and C02 Processing subsystems

e

a

e

0

0

e

- Controller

For the functionality of the potable water processing it is not important which
tank is used for the filtration or for the water testing. This leads to the fact that on
this level of decomposition the physical layout is completely ignored. However the
physical layout is important for the entire model and can be modeled as a different
view of the system.

The pumping process takes the inputs dehumidification water and carbon
reduction water and pumps it into the distribution and storage process. The distribu-
tion and storage process basically models on a lower level of the hierarchy the tanks
and their current state, respectively. The switching of the functionality is controlled
by a controller process which receives status signals from the distribution process,
and using a finite state automaton, control signals are generated to control pipe
switches. Status signals are, for instance, the level of the tanks. The multi filtration
process consumes water from the distribution process, filters it, and returns it back.
The same applies to the potable water testing.

3. Hygiene Processing

The outcome of the distribution process is the supply of drinking water and
make-up water exported through the interface and used on an upper level by the
hygiene process.

The overall task of the hygiene process is to supply modules like shower and
dishwasher with waste water and to clean this water for further use. Furthermore
the urine of the crew members has to be filtered in order not to loose water in the
closed water loop of the ECLSS.

The decomposition of the hygiene processing is shown in Picture 17.a. The
central process is the hygiene subprocess. It supplies the user modules modeled in
the subprocess circulation/consumer with filtered waste water and takes the col-
lected water from this subprocess for its task as an input. Further input signals are
body waste of the crew, processed urine and the makeup water supplied by the
potable water processing. The output are the before mentioned waste water supply,
clean water exported by the hygiene processing to the air control, and brine.

99

a

a

a Picture 16: Incomplete Process Model of the Potable Water Processing subsystem

e

e

0

e

e

a

e

0

The urine processing seperates and filters the urine and the brine and supplies
the hygiene process with preprocessed urine. A further output of the hygiene
processing is the vapor generated by the user modules.

The waste water circulation is the only subprocess of the hygiene processing
defined in more detail thus far (see Picture 17.b). It takes the supplied unused waste
water, stores it, and distributes it to the different users. This function is modeled in
the supprocess Waste Water Supply. Each User is modeled as a subprocess consum-
ing the supplied waste water and returning used waste water and vapor. The vapor is
actually contained in the air, but since the air flow is modeled in the air control, only
the vapor has to be established as a separate signal. Waste water and vapor are
collected by the supprocesses waste water collector and vapor addition and supplied
through the interface.

Declarative Form of the HPM

Thus far the funtional structure and decomposition of the ECLSS has been described.
The Graphic Automation Testbed facilitates the modeling process by a graphical editor.
The use of graphic editors helps to avoid errors and increases the visibility of the system
structure. For further use of the process model a more formalized representation has to be
generated. This is done automatically by our system. Figure 8 shows the declarative form of
the air control process. The declarative form contains all the necessary information to
reconstruct the model and the graphical presentation of it. Furthermore the declarative
form can be extended to carry more information about different views of the system like
the fault modeling aspect.

In a leaf in the process hierarchy only the input and output signals are specified.
Pictures 18.a-b show an example for such a process. The graphical editor allows, at any
time, extension of the process model to greater detail or modification of a process as long
as the interface to process remains the same or is extended. The pictures show some pop
up menus to extend a process model. It allows the user to specify new signals, subprocesses
and connections between them. In order to represent subprocesses graphically the user can
use a bit map editor to create an icon for a specific process. Each icon also contains a
connection point for each input and output signal in order to enable the user to specify
connections to and from those signals on a higher level.

e

101

e
ORIGINAL PAGE

COLOR PHOTOGRAPH

e

e

e

Pictures 17a-b: Process Models of the Hygiene Processing and Waste Water Circula-
tion subsystems

e

Figure 8. Declarative form of the Air Control Process

Hierarchical Fault Models (HFM) for the ECLSS

Once the process model is defined, different views of the processes can be considered
and modeled. In this section we are considering a fault model for the ECLSS. We would
like to emphasize that the fault specification is incomplete and needs further refinements
to be used for diagnosis.

103
ORIGINAL PAGE

BLACK AND WHITE PHOTOGRAPH

ORIGINAL PAGE
COLOS PHOTOGRAPH

Pictures 18a-b: Interactive, graphical modeling and iconification of a Process

0

I

' 0

0

0

0

0

0

0

The construction of a fault model is performed the same way as that of of a process
model, namely using an appropriate graphical editor. Each fault model is represented on
the higher level of the hierarchy by an icon where each icon has several connection points
related to the failure modes of the subprocess. An important aspect of fault modeling is its
close relationship to the process models. When a fault model for a process is to be defined,
the fault model will inherit the basic structure from the HPM: (1) the name of the sub-
processes, and (2) the causal links among the the subprocesses which is derived from the
existence of physical links. This relationship guarantees that the HPM and HFM will be
consistent.

In the following, some of the failure modes and their relationships will be explained
from the point of view of the diagnosis. The failure model of the ECLSS as shown in
Picture 19. does not have any failure modes but defines possible relationships of failure
modes of its submodels. For instance, if the failure mode of the potable water submodel is
set, this can be due to the fact that there is an internal propagation inside the potable water
process or due to the fact that the humidity is high or no water is produced by the air
control process.

1. Failure Model of the Air Control

Suppose that the system detects that their is no water supply for the potable
water processing. Picture 20.a shows the failure model of the air control. The diag-
nosis traces the error back to the 'No water forgotable supply' failure mode of
the air control. The diagnosis tries to-find a i explanation by exploring the fault
model for the air control. Dependent on whether the corresponding failure modes
are set the THC model, C02 model and the 0 2 model are examined to find more
detailed explanation of why the failure mode is set. Suppose the reduction error
failure mode of the C02 process is not set, then there is no reason to check the C 0 2
process or the 0 2 process for more detail. The source of failure must be the THC
module.

Picture 20.b shows the failure model of the C02 processing. An reduction
error might be caused by a failing of either one of the two sub processes. Both are
due to check when the upper failure mode is set.

0
2. Fault Model of the Potable Water Processing

0

0

Picture 21 shows the fault model for the potable water processing. Beside the

105

definition of the failure modes the model is incomplete. The graphical editor auto-
matically displays the icons and the names of the submodels. Since the icons are not
yet defined, a standard icon is shown to remind the user of the incompleteness of his
system.

3. Fault Model of the Hygiene Processing

0

The fault model of the hygiene processing is shown in Picture 22.a. Two major
failures are identified in the model: the water quality and the water quantity. The
fact that the water is dirty might be due to the fact that the inverse osmosis of the
central hygiene process is out of order or that the urine process fails or that the
waste water quality is so low that the filtration of the hygiene process is overloaded.
Low water supply can be traced back usually to a leakage in one of the subcom-
ponents.

Picture 22.b shows the incomplete fault model of the waste water circulation.
Here some alarms are edited but not yet connected. Connections will cause the
connected failure modes to be activated whenever the alarms go on.

As mentioned earlier the fault model is one aspect of a process model besides the
structural view. Therefore the fault model is also stored in the declarative form of the
process model. This is shown in Figure 9 for the hygiene process. The declarative form
holds structural and fault model information about the process in different view slots,
which are both accessed by the diagnosis system.

TestinP of Diaenosability

After completing the HPM and HFM for the ECLSS, the remaining steps of the
analysis will be executed.

1. First, an alarm detection model will be defined which associates each failure mode
with a separate alarm.

2. The real-time alarm pattern simulator will be generated by using this model, i.e. an
introduced fault will generate a complete alarm sequence. The diagnostic system
will obviously identify the exact failure source, because of the highly redundant
failure mode detection.

106

I *

e

e

a

e

a

e

e

ORIGINAL PAGE
COLOR PHOTOGRAPH

Picture 19: Failure Model of ECLSS

e

a

a

e

e

a

e

e

ORIGINAL PAGE
COLOR PHDTOGRAPH

Pictures 20a-b: Failure Models of the Air Control and C02 Processing subsystems

e

io

l

0

a

0

ORlGiNAC PAGE
(:(?LOR PHOTOGRAPH

Picture 21: Failure Model of the Potable Water Processing subsystem

0

0

Figure 9. Fault Diagnosis Declarative Form of the Higiene Process

3. By introducing "filters" in the alarm sequence, we will simulate situations with less
primary alarm sources, i.e. with less sensors. The output of the diagnostic process
will reflect the effect of the decrease of the redundancy in terms of decreasing
resolution of the diagnosis.

ORIGINAL PAGE
BLACK AND WHITE PHOTOGRAPH

110

ORIGINAL PAGE
COLOR PHOTOGRAPH

Pictures 22a-b: Failure Models of the Hygiene Processing and Waste Water Circula-
tion subsystems

0 5. FUTURE WORK

0

0

0

0

0

0

In the first year of the project we have obtained experiences with the potential of a
graphic workstation environment in robot simulation and have tested the new capabilities
of the AI extension of ROBOSIM. The research has been conducted in three parallel
directions:

1. Improvement of the basic capabilities of ROBOSIM by taking advantage of the
graphic workstation environment.

2. Integration of ROBOSIM with AI-based modeling techniques and extension of the
capabilities of the basic system with support toward general automation problems.

3. Continuous testing of the system with a variety of application problems.

In the next performance period we plan to continue these activities. The specific tasks
that we will work on are the following:

1. Improvement of the basic capabilities of ROBOSIM: We will continue working on
the implementation of a fast inverse kinematic algorithm, on the improvement of
the collision detection system, and on the extension of the basic package with
dynamics.

2. Integration of ROBOSIM with AI-based techniques: We will continue the im-
plementation of the new modeling and representation techniques described in detail
in Section 2. This new, AI-based representation system will make it possible to
integrate ROBOSIM with other AI-based packages, such as the NASA-developed
CLIPS system and the MULTIGRAPH system. The integration will ensure that
ROBOSIM can serve as a general purpose robotics and automation simulation
package.

3. Application systems: We plan to continue testing the ROBOSIM package in dif-
ferent application problems related to Space Station automation and robotics. The
application experiences provide valuable feedback for the further improvement of
the system.

0

112

0

l

e

0

Going a step beyond of these specific tasks, there is an other important area of
development possibilities. Currently many companies in the aerospace community are
developing various testbeds for automation systems. (For example the SSFP system
developed by the MITRA corporation.) Many of these testbeds are targeted for designing
and testing different subsystems of space-based automation systems (for example the
automation systems of the Space Station). We think that it would be advantageous if data
could be shared between the different testbeds, since it would allow a more comprehensive
testing of these automation systems, than any single testbed alone. That is why it is our
intention to study the possibility of developing interface packages which would enable us to
use data from other systems in our automation and robotics testbed.

0

e

e

e

0

113

e

